A computer-based method was developed for rapid and automatic identification of potential "frequent hitters". These compounds show up as hits in many different biological assays covering a wide range of targets. A scoring scheme was elaborated from substructure analysis, multivariate linear and nonlinear statistical methods applied to several sets of one and two-dimensional molecular descriptors. The final model is based on a three-layered neural network, yielding a predictive Matthews correlation coefficient of 0.81. This system was able to correctly classify 90% of the test set molecules in a 10-times cross-validation study. The method was applied to database filtering, yielding between 8% (compilation of trade drugs) and 35% (Available Chemicals Directory) potential frequent hitters. This filter will be a valuable tool for the prioritization of compounds from large databases, for compound purchase and biological testing, and for building new virtual libraries.
An oxetane can trigger profound changes in aqueous solubility, lipophilicity, metabolic stability, and conformational preference when replacing commonly employed functionalities such as gem-dimethyl or carbonyl groups. The magnitude of these changes depends on the structural context. Thus, by substitution of a gem-dimethyl group with an oxetane, aqueous solubility may increase by a factor of 4 to more than 4000 while reducing the rate of metabolic degradation in most cases. The incorporation of an oxetane into an aliphatic chain can cause conformational changes favoring synclinal rather than antiplanar arrangements of the chain. Additionally spirocyclic oxetanes (e.g., 2-oxa-6-aza-spiro[3.3]heptane) bear remarkable analogies to commonly used fragments in drug discovery, such as morpholine, and are even able to supplant the latter in its solubilizing ability. A rich chemistry of oxetan-3-one and derived Michael acceptors provide venues for the preparation of a broad variety of novel oxetanes not previously documented, thus providing the foundation for their broad use in chemistry and drug discovery.
Sizable resources, both financial and human, are invested each year in the development of new pharmaceutical agents. However, despite improved techniques, the new compounds often encounter difficulties in satisfying and overcoming the numerous physicochemical and many pharmacological constraints and hurdles. Oxetanes have been shown to improve key properties when grafted onto molecular scaffolds. Of particular interest are oxetanes that are substituted only in the 3-position, since such units remain achiral and their introduction into a molecular scaffold does not create a new stereocenter. This Minireview gives an overview of the recent advances made in the preparation and use of 3-substituted oxetanes. It also includes a discussion of the site-dependent modifications of various physicochemical and biochemical properties that result from the incorporation of the oxetane unit in molecular architectures.
Ring the changes: Introduction of an oxetane ring results in remarkably improved physico‐ and biochemical properties of the underlying scaffold. The oxetane ring confers enhanced solubility, reduces the metabolic degredation, lipophilicity, and amphiphilicity, and modulates the basicity of a nearby amine group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.