Abstract. We investigate stochastic structure in hot-star winds. The structure (i.e. inhomogeneities such as clumps and shocks) is generated by the instability of the line driving mechanism in the inner wind. It is self-excited in the sense that it persists even in the absence of explicit perturbations. The evolution of structure as it moves out with the flow is quantified by the radial dependence of statistical properties such as the clumping factor and the velocity dispersion. We find that structure evolves under the influence of two competing mechanisms. Dense clumps pressure-expand into the rarefied gas that separates them, but this expansion is counteracted by supersonic collisions among the clumps, which tend to compress them further. Because of such ongoing collisions, clumps can survive over an extended region out of pressure equilibrium with the rarefied surrounding gas. Moreover, the linedriving force has little rôle in maintaining the structure beyond about 20-30 R * , implying that the outer evolution can be simplified as a pure gasdynamical problem. In modelling the distant wind structure we find it is necessary to maintain a relatively fine constant grid spacing to resolve the often quite narrow dense clumps. We also find that variations in the heating and cooling, particularly the "floor" temperature to which shock-compressed gas is allowed to cool, can affect both the density and temperature variation. Finally, we find that increasing the value of the line-driving cut-off parameter κmax can significantly enhance the level of flow structure. Overall, the results of our work suggest that structure initiated in the inner wind acceleration region can survive to substantial distances (∼100 R * ), and thus can have an important influence on observational diagnostics (e.g. infrared and radio emission) formed in the outer wind.
Abstract. We report the results of a multi-wavelength investigation of the O4 V star 9 Sgr (= HD 164794). Our data include observations in the X-ray domain with XMM-Newton, in the radio domain with the VLA as well as optical spectroscopy. 9 Sgr is one of a few presumably single OB stars that display non-thermal radio emission. This phenomenon is attributed to synchrotron emission by relativistic electrons accelerated in strong hydrodynamic shocks in the stellar wind. Given the enormous supply of photospheric UV photons in the wind of 9 Sgr, inverse Compton scattering by these relativistic electrons is a priori expected to generate a non-thermal power law tail in the X-ray spectrum. Our EPIC and RGS spectra of 9 Sgr reveal a more complex situation than expected from this simple theoretical picture. While the bulk of the thermal X-ray emission from 9 Sgr arises most probably in a plasma at temperature ∼3 × 10 6 K distributed throughout the wind, the nature of the hard emission in the X-ray spectrum is less clear. Assuming a non-thermal origin, our best fitting model yields a photon index of ≥2.9 for the power law component which would imply a low compression ratio of ≤1.79 for the shocks responsible for the electron acceleration. However, the hard emission can also be explained by a thermal plasma at a temperature ≥2 × 10 7 K. Our VLA data indicate that the radio emission of 9 Sgr was clearly non-thermal at the time of the XMM-Newton observation. Again, we derive a low compression ratio (1.7) for the shocks that accelerate the electrons responsible for the synchrotron radio emission. Finally, our optical spectra reveal long-term radial velocity variations suggesting that 9 Sgr could be a long-period spectroscopic binary.
Abstract. We report the results of an XMM-Newton observation of the Lagoon Nebula (M 8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC 6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experienced a flare-like increase of its X-ray flux making it the second brightest source in M 8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT ∼ a few keV. Only a few of the X-ray selected PMS candidates are known to display Hα emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC 6530 are weak-line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5 III-IV star. At least one of the known Herbig Be stars in NGC 6530 (LkHα 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region.
Abstract. We present an efficient technique to study the 1D evolution of instability-generated structure in winds of hot stars out to very large distances (∼1000 stellar radii). This technique makes use of our previous finding that external forces play little rôle in the outer evolution of structure. Rather than evolving the entire wind, as is traditionally done, the technique focuses on a representative portion of the structure and follows it as it moves out with the flow. This requires the problem to be formulated in a moving reference frame. The lack of Galilean invariance of the spherical equations of hydrodynamics is circumvented by recasting them in a pseudo-planar form. By applying the technique to a number of problems we show that it is fast and accurate, and has considerable conceptual advantages. It is particularly useful to test the dependence of solutions on the Galilean frame in which they were obtained. As an illustration, we show that, in a one-dimensional approximation, the wind can remain structured out to distances of more than 1300 stellar radii from the central star.
Abstract. We report the results of a multiwavelength study of the non-thermal radio emitter HD 168112 (O5.5III(f + )). The detailed analysis of two quasi-simultaneous XMM-Newton and VLA observations reveals strong variability of this star both in the X-ray and radio ranges. The X-ray observations separated by five months reveal a decrease of the X-ray flux of ∼30%. The radio emission on the other hand increases by a factor 5-7 between the two observations obtained roughly simultaneously with the XMM-Newton pointings. The X-ray data reveal a hard emission that is most likely produced by a thermal plasma at kT ∼ 2-3 keV while the VLA data confirm the non-thermal status of this star in the radio waveband. Comparison with archive X-ray and radio data confirms the variability of this source in both wavelength ranges over a yet ill defined time scale. The properties of HD 168112 in the X-ray and radio domain point towards a binary system with a significant eccentricity and an orbital period of a few years. However, our optical spectra reveal no significant changes of the star's radial velocity suggesting that if HD 168112 is indeed a binary, it must be seen under a fairly low inclination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.