Computer modelling techniques are used to investigate the surface properties and defect chemistry of the La 2 NiO 4 material. Relaxed surface structures and energies are calculated for the low index planes which are used to predict the equilibrium crystal morphology. The {111} surface is calculated to dominate in the absence of impurities, water or surface irregularities, with significant contributions from the {100} and {001} surfaces. Isovalent doping of the Ni site by Fe and Cu is found to affect the crystal morphology by increasing the expression of the {001} surface, although Fe doping is predicted to create the {011} face which is not present in the undoped crystal. The Sr dopant at the La site is calculated to be the most soluble of the alkaline earth metals, in accord with observation. Charge compensation is predicted to occur via the formation of Ni(III), which is consistent with bulk calculations and catalytic models in which Ni(III) species are correlated to the observed catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.