Posttranslational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis1. Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose-ribose bond, and is synthesised from NAD by poly(ADP-ribose) polymerases (PARPs)1,2. Poly(ADP-ribose) glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death3,4. Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that exhibits all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macro domain family5,6. High resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. Our insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation link to human disease.
Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides1. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle2–3. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria4–5, with substrates including the notorious polychlorinated biphenyls (PCBs) or dioxins6–7. These proteins form a distinct subfamily of cobalamin (B12) dependent enzymes that are usually membrane-associated and oxygen-sensitive, hindering detailed studies8–12. We report the characterisation of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-Co bond chemistry catalyzed by the other cobalamin-dependent subfamilies13 we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-Co bond formation. This presents a new paradigm in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the non-ribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation–PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP–reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that reduction of the aldehyde product does not occur. Combining crystallography with small-angle x-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.
Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios.
The ability to independently control the expression of multiple genes by addition of distinct small-molecule modulators has many applications from synthetic biology, functional genomics, pharmaceutical target validation, through to gene therapy. Riboswitches are relatively simple, small-molecule-dependent, protein-free, mRNA genetic switches that are attractive targets for reengineering in this context. Using a combination of chemical genetics and genetic selection, we have developed riboswitches that are selective for synthetic "nonnatural" small molecules and no longer respond to the natural intracellular ligands. The orthogonal selectivity of the riboswitches is also demonstrated in vitro using isothermal titration calorimetry and x-ray crystallography. The riboswitches allow highly responsive, dose-dependent, orthogonally selective, and dynamic control of gene expression in vivo. It is possible that this approach may be further developed to reengineer other natural riboswitches for application as small-molecule responsive genetic switches in both prokaryotes and eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.