A combination of thirty-two 10-ns-scale molecular dynamics simulations were used to explore the coupling between conformational transition and phosphorylation in the bacteria chemotaxis Y protein (CheY), as a simple but representative example of protein allostery. Results from these simulations support an activation mechanism in which the beta4-alpha4 loop, at least partially, gates the isomerization of Tyr106. The roles of phosphorylation and the conserved Thr87 are deemed indirect in that they stabilize the active configuration of the beta4-alpha4 loop. The indirect role of the activation event (phosphorylation) and/or conserved residues in stabilizing, rather than causing, specific conformational transition is likely a feature in many signaling systems. The current analysis of CheY also helps to make clear that neither the "old" (induced fit) nor the "new" (population shift) views for protein allostery are complete, because they emphasize the kinetic (mechanistic) and thermodynamic aspects of allosteric transitions, respectively. In this regard, an issue that warrants further analysis concerns the interplay of concerted collective motion and sequential local structural changes in modulating cooperativity between distant sites in biomolecules.
An approach for computing accurate redox potentials in enzymes is developed based on the free energy perturbation technique in a QM/MM framework. With an appropriate choice of the QM level and QM/MM coupling scheme, the intermolecular interaction between the redox center and the protein environment can be adequately described; the speed of QM/MM methods also allows a sufficient configurational sampling for the convergence of free energy derivatives. Following the implementation into the simulation package CHARMM, the method was tested with an application to the first reduction potential of FAD in cholesterol oxidase (Chox). In addition to an accurate QM level and adequate conformational samplings, the effect of long-range electrostatic interactions due to the bulk solvent was also found to be essential. Using a semi-empirical density functional theory (SCC-DFTB) as the QM level, and a multi-stage charge-scaling scheme based on Poisson–Boltzmann calculations for the solvation effect, satisfactory agreements with experimental measurements were obtained. The study of Chox also indicates that large errors in the calculated redox potential might arise if changes in the conformational properties of the protein during the redox process are not taken into account, such as in energy minimization type of studies based on only the X-ray structure of the enzyme in one redox state.
Extensive molecular dynamics (MD) simulations (∼ 70 ns total) with explicit solvent molecules and salt ions are carried out to probe the effects of temperature and salt concentration on the structural stability of the human Lymphotactin (hLtn). The distribution of ions near the protein surface and the stability of various structural motifs are observed to exhibit interesting dependence on the local sequence and structure. Whereas chloride association to the protein is overall enhanced as the temperature increases, the sodium distribution in the C-terminal helical region and, to a smaller degree, the chloride distribution in the same region are found higher at the lower temperature. The similar trend is also observed in non-linear Poisson-Boltzmann calculations with a temperaturedependent water dielectric constant, once conformational averaging over a series of MD snapshots is done. The unexpected temperature dependence in the ion distribution is explained based on the cancellation of association entropy for ion-sidechain pairs of opposite-charge and like-charge characters, which have positive and negative contributions, respectively. The C-terminal helix is observed to partially melt while a short • strand forms at the higher temperature with little salt dependence. The N-termal region, by contrast, develops partial helical structure at a higher salt concentration. These observed behaviors are consistent with solvent and salt screening playing an important role in stabilizing the canonical chemokine fold of hLtn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.