In animals, repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) reduces markers of serotonergic activity and studies show similar serotonergic deficits in human MDMA users. Using proton magnetic resonance spectroscopy ( 1 H-MRS) at 11.7 Tesla, we measured the metabolic neurochemical profile in intact, discrete tissue punches taken from prefrontal cortex, anterior striatum, and hippocampus of rats administered MDMA (5 mg/kg IP, 4× q 2 h) or saline and euthanized 7 days after the last injection. Monoamine content was measured with HPLC in contralateral punches from striatum and hippocampus to compare the MDMA-induced loss of 5HT innervation with constituents in the 1 H-MRS profile. When assessed 7 days after the last MDMA injection, levels of hippocampal and striatal serotonin (5HT) were significantly reduced, consistent with published animal studies. N-acetylaspartate (NAA) levels were significantly increased in prefrontal cortex and not affected in anterior striatum or hippocampus; myo-inositol (INS) levels were increased in prefrontal cortex and hippocampus but not anterior striatum. Glutamate levels were increased in prefrontal cortex and decreased in hippocampus, while GABA levels were decreased only in hippocampus. The data suggest that NAA may not reliably reflect MDMA-induced 5HT neurotoxicity. However, the collective pattern of changes in 5HT, INS, glutamate and GABA is consistent with persistent hippocampal neuroadaptations caused by MDMA.
Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic signaling on MDMA-induced changes in cardiac metabolism remain to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.