The authors assessed electroencephalographic coherence to determine the relation between cortico-cortical communication and visuomotor skill in 15 expert and 21 novice rifle shooters. They then calculated coherence and phase angles among the prefrontal (F3, F4) and ipsilateral cortical regions (central, temporal, parietal, occipital) during the aiming period for the theta (4-7 Hz), low-alpha (8-10 Hz), high-alpha (11-13 Hz), low-beta (14-22 Hz), high-beta (23-35 Hz), and gamma (36-44 Hz) bands. The authors subjected them separately to a series of analyses of variance (Group X Hemisphere X Region X Epoch). Experts generally exhibited lower coherence compared with novices, with the effect most prominent in the right hemisphere. The groups also exhibited differences in phase angle in a number of frequency bands. Coherence was positively related to aiming movement variability in experts. The results support refinement of cortical networks in experts and differences in strategic planning related to memory processes and executive influence over visual-spatial cues.
Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle-segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk-leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles.
The properties of sensory reweighting for control of human upright stance have primarily been investigated through experimental techniques such as sinusoidal driving of postural sway. However, other forms of visual inputs that are commonly encountered, such as translation, may produce different adaptive responses. We directly compared sinusoidal and translatory inputs at stimulus parameters that made stimulus velocity comparable with each type of stimulus. Young healthy individuals were compared with healthy elderly and elderly designated as "fall-prone" to investigate whether the hypothesized basis for poor balance control in the "fall-prone" elderly is related to their ability to reweight sensory inputs appropriately. Standing subjects were presented with visual displays which moved in the medial-lateral direction either by (1) oscillating at different amplitudes or (2) simultaneously oscillating and translating at different speeds. All three subject groups showed that increasing the amplitude of the oscillations led to a decrease in gain. Increasing translation speed led to decreases in gain only at speeds above 1 cm/s. This suggests that the nervous system is processing more than just stimulus velocity to determine the postural response. A model implementing "state-dependent noise", in which visual stimulus noise increases with relative speed, was developed to account for the difference between translation and oscillation. The weak group effects question the common view that the fall-prone elderly are deficient in sensory reweighting. One explanation for the apparent discrepancy is that the slow, small-amplitude visual stimuli used in this study probe the asymptotic dynamics of the postural response. If given enough time, even the fall-prone elderly are able to adapt to a new sensory environment appropriately. However, the asymptotic adaptive response may not be functional in terms of preventing falls.
Although hypervigilance may play a role in some clinical pain syndromes, experimental vigilance toward painful stimuli has been studied infrequently. We evaluated vigilance toward pain by using a continuous performance task (CPT), in which subjects responded to moderately intense painful target stimuli, occurring in a train of mildly painful nontargets. We assessed nondetected targets (misses), reaction times (RTs), and psychological activation (tense arousal). During time on task in CPTs of other sensory modalities, there is an increase in misses and RTs (vigilance decrement). We hypothesized that our CPT would influence vigilance performance related to pain, anxiety, and limitation of attentional resources. The results showed a decrement in vigilance over time as misses increased, although RTs were unchanged. While mind-wandering did not influence vigilance performance, intrinsic attention to pain drove both hit RTs and number of misses. This resulted in pain-focused subjects performing worse on the CPT pain task with slower RTs and more misses per block. During the CPT, the change in stimulus salience was related to the change in pain intensity, while pain unpleasantness correlated with tense arousal. CPT performance during experimental vigilance to pain and psychological activation were related to trait anxiety, as measured by the Spielberger State-Trait Anxiety Inventory and neuroticism, as measured by the NEO five factor inventory. Trait anxiety and neuroticism may play important roles in an individual’s predisposition to dwell on pain and interpret pain as threatening. NEW & NOTEWORTHY Subjects detected moderately painful target stimuli in a train of mildly painful nontarget stimuli, which resulted in vigilance performance metrics including missed targets, reaction times, and psychological activation. These performance metrics were related to intrinsic attention to pain and trait anxiety. Subjects with high trait anxiety and neuroticism scores, with a predisposition to attend to pain, had greater tense arousal and poorer vigilance performance, which may be important psychological aspects of vigilance to pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.