This study involved a systematic video analysis of 16 anterior cruciate ligament (ACL) injuries sustained by elite-level netball players during televised games in order to describe the game situation, the movement patterns involved, the player's behaviour, and a potential injury mechanism. Eight of the ACL injuries were classified as "indirect contact" and eight as "non-contact". Two common scenarios were identified. In Scenario A the player was jumping to receive or intercept a pass and whilst competing for the ball experienced a perturbation in the air. As a result the player's landing was unbalanced with loading occurring predominantly on the knee of the injured side. In Scenario B the player was generally in a good position at ground contact, but then noticeably altered the alignment of the trunk before the landing was completed. This involved rotating and laterally flexing the trunk without altering the alignment of the feet. Apparent knee valgus collapse on the knee of the injured side was observed in 3/6 Scenario A cases and 5/6 Scenario B cases. Players may benefit from landing training programmes that incorporate tasks that use a ball and include decision-making components or require players to learn to cope with being unbalanced.
Evasive change-of-direction manoeuvres (agility skills) are a fundamental ability in rugby union. In this study, we explored the attributes of agility skill execution as they relate to effective attacking strategies in rugby union. Seven Super 14 games were coded using variables that assessed team patterns and individual movement characteristics during attacking ball carries. The results indicated that tackle-breaks are a key determinant of try-scoring ability and team success in rugby union. The ability of the attacking ball carrier to receive the ball at high speed with at least two body lengths from the defence line against an isolated defender promoted tackle-breaks. Furthermore, the execution of a side-step evasive manoeuvre at a change of direction angle of 20Á608 and a distance of one to two body lengths from the defence, and then straightening the running line following the initial direction change at an angle of 20Á608, was associated with tackle-breaks. This study provides critical insight regarding the attributes of agility skill execution that are associated with effective ball carries in rugby union.
Contact skills are fundamental attributes of performance in rugby union. This study explored how the qualities of contact intensity and fending strategies related to tackle outcome in rugby union. Seven Super 14 games were coded using numerous quantitative and qualitative variables that assessed team patterns and individual skill execution during attacking ball carries. A variety of contact skills were shown to contribute significantly to the prediction of tackle-breaks. It was shown that 92% of tackle-breaks occurred as a result of poor defensive positioning. In addition, strong contact intensity and active fending strategies predicted 86% of poor defensive positions. Notably, active fend strategies were associated with positive phase outcomes when running straight at the defence and when using evasive methods of attack. This study provided critical insight regarding how the qualities of contact intensity and fending strategies influence effective ball carries in rugby union.
The purpose of this study was first, to determine whether there were differences in the roundhouse kicking leg kinematics performed by highly skilled Muay Thai, Karate and Taekwondo practitioners (n = 8 per group). Next, analysis aimed to identify the kinematic determinants of effective roundhouse kicking performance. Three-dimensional (3D) lower limb kinematics were recorded using a nine camera infra-red motion capture system (500 Hz) during three maximal roundhouse kicks. Impact forces were recorded using a strain gauge (1000 Hz) attached to a kicking pad positioned at the height of each participant’s mastoid process. Results showed that linear foot velocity at impact was moderately correlated with relative impact force (r = 0.66, P = 0.001). Discipline specific analyses of the temporal data indicated that the Muay Thai group had a shorter execution time (1.02 ± 0.15 s) than Taekwondo (1.54 ± 0.52 s, P = 0.028). Analysis of lower limb kinematic data indicated that both Karate (-947 ± 94 deg/s, P = 0.010) and Taekwondo (-943 ± 106 deg/s, P = 0.011) practitioners had faster knee extension velocities than the Muay Thai group (-706 ± 200 deg/s). Conversely, the Muay Thai practitioners (1.24 ± 0.15 m/s) had greater vertical centre of mass movement than both Karate (0.78 ± 0.24 m/s, P = 0.001) and Taekwondo groups (0.93 ± 0.19 m/s, P = 0.02). Our findings show that several fundamental movement patterns were common to the roundhouse kicking techniques across the Muay Thai, Karate, and Taekwondo disciplines. Effective roundhouse kicking performance was characterized by rapid pelvic axial rotation, hip abduction, hip flexion and knee extension velocities, combined with rapid movements of the COM towards the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.