Purpose
For clinical implementation, a chemical exchange saturation transfer (CEST) imaging sequence must be fast, with high signal‐to‐noise ratio (SNR), 3D coverage, and produce robust contrast. However, spectrally selective CEST contrast requires dense sampling of the Z‐spectrum, which increases scan duration. This article proposes a compromise: using a 3D snapshot gradient echo (GRE) readout with optimized CEST presaturation, sampling, and postprocessing, highly resolved Z‐spectroscopy at 3T is made possible with 3D coverage at almost no extra time cost.
Methods
A 3D snapshot CEST sequence was optimized for low‐power CEST MRI at 3T. Pulsed saturation was optimized for saturation power and saturation duration. Spectral sampling and postprocessing (B
0
correction, denoising) was optimized for spectrally selective Lorentzian CEST effect extraction. Reproducibility was demonstrated in 3 healthy volunteers and feasibility was shown in 1 tumor patient.
Results
Low‐power saturation was achieved by a train of 80 pulses of duration t
p
= 20 ms (total saturation time t
sat
= 3.2 seconds at 50% duty cycle) with B
1
= 0.6 μT at 54 irradiation frequency offsets. With the 3D snapshot CEST sequence, a 180 × 220 × 54 mm field of view was acquired in 7 seconds per offset. Spectrally selective CEST effects at +3.5 and –3.5 ppm were quantified using multi‐Lorentzian fitting. Reproducibility was high with an intersubject coefficient of variation below 10% in CEST contrasts. Amide and nuclear overhauser effect CEST effects showed similar correlations in tumor and necrosis as show in previous ultra‐high field work.
Conclusion
A sophisticated CEST tool ready for clinical application was developed and tested for feasibility.
Purpose
To determine the feasibility of employing the prior knowledge of well‐separated chemical exchange saturation transfer (CEST) signals in the 9.4 T Z‐spectrum to separate overlapping CEST signals acquired at 3 T, using a deep learning approach trained with 3 T and 9.4 T CEST spectral data from brains of the same subjects.
Methods
Highly spectrally resolved Z‐spectra from the same volunteer were acquired by 3D‐snapshot CEST MRI at 3 T and 9.4 T at low saturation power of B1 = 0.6 µT. The volume‐registered 3 T Z‐spectra‐stack was then used as input data for a three layer deep neural network with the volume‐registered 9.4 T fitted parameter stack as target data.
Results
An optimized neural net architecture could be found and verified in healthy volunteers. The gray‐/white‐matter contrast of the different CEST effects was predicted with only small deviations (Pearson R = 0.89). The 9.4 T prediction was less noisy compared to the directly measured CEST maps, although at the cost of slightly lower tissue contrast. Application to an unseen tumor patient measured at 3 T and 9.4 T revealed that tumorous tissue Z‐spectra and corresponding hyper‐/hypointensities of different CEST effects can also be predicted (Pearson R = 0.84).
Conclusion
The 9.4 T CEST signals acquired at low saturation power can be accurately estimated from CEST imaging at 3 T using a neural network trained with coregistered 3 T and 9.4 T data of healthy subjects. The deepCEST approach generalizes to Z‐spectra of tumor areas and might indicate whether additional ultrahigh‐field (UHF) scans will be beneficial.
By adapting a pulse shape for low-power SL experiments, we were able to acquire robust on- and off-resonant adiabatic SL prepared images in vivo at 9.4 T. This development leads directly to SL Z-spectrum acquisition, beneficial for chemical-exchange-weighted MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.