This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. Topics covered by systematic reviews include cardiopulmonary resuscitation during transport; approach to resuscitation after drowning; passive ventilation; minimizing pauses during cardiopulmonary resuscitation; temperature management after cardiac arrest; use of diagnostic point-of-care ultrasound during cardiac arrest; use of vasopressin and corticosteroids during cardiac arrest; coronary angiography after cardiac arrest; public-access defibrillation devices for children; pediatric early warning systems; maintaining normal temperature immediately after birth; suctioning of amniotic fluid at birth; tactile stimulation for resuscitation immediately after birth; use of continuous positive airway pressure for respiratory distress at term birth; respiratory and heart rate monitoring in the delivery room; supraglottic airway use in neonates; prearrest prediction of in-hospital cardiac arrest mortality; basic life support training for likely rescuers of high-risk populations; effect of resuscitation team training; blended learning for life support training; training and recertification for resuscitation instructors; and recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 task forces have assessed, discussed, and debated the quality of the evidence using Grading of Recommendations Assessment, Development, and Evaluation criteria and generated consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections, and priority knowledge gaps for future research are listed.
ObjectiveTo assess the burden of paediatric traumatic brain injury (TBI) on neurocognition via a systematic review and meta-analysis.MethodsStudies that compared neurocognitive outcomes of paediatric patients with TBI and controls were searched using Medline, Embase, PsycINFO and Cochrane Central Register of Controlled Trials, between January 1988 and August 2019. We presented a random-effects model, stratified by TBI severity, time of assessment post injury and age.ResultsOf 5919 studies, 41 (patients=3717) and 33 (patients=3118) studies were included for the systematic review and meta-analysis, respectively. Studies mostly measured mild TBI (n=26, patients=2888) at 0–3 months postinjury (n=17, patients=2502). At 0–3 months postinjury, standardised mean differences between TBI and controls for executive function were −0.04 (95% CI −0.14 to 0.07; I2=0.00%), −0.18 (95% CI −0.29 to –0.06; I2=26.1%) and −0.95 (95% CI −1.12 to –0.77; I2=10.1%) for mild, moderate and severe TBI, respectively; a similar effect was demonstrated for learning and memory. Severe TBI had the worst outcomes across all domains and persisted >24 months postinjury. Commonly used domains differed largely from workgroup recommendations. Risk of bias was acceptable for all included studies.ConclusionA dose-dependent relationship between TBI severity and neurocognitive outcomes was evident in executive function and in learning and memory. Cognitive deficits were present for TBIs of all severity but persisted among children with severe TBI. The heterogeneity of neurocognitive scales makes direct comparison between studies difficult. Future research into lesser explored domains and a more detailed assessment of neurocognitive deficits in young children are required to better understand the true burden of paediatric TBI.
IntroductionChildren who suffer from traumatic brain injury (TBI) are at risk of permanent brain damage and developmental deficits. Reports on neurodevelopmental outcomes in paediatric TBI suffer from small sample size and varying outcome definitions in the neurocognitive domains tested. This protocol describes a systematic review and meta-analysis of paediatric TBI in the following key neurocognitive domains: executive function, perceptual–motor function, language, learning and memory, social cognition and complex attention.MethodsA comprehensive search comprising studies from Medline, Cochrane, Embase and PsycINFO published from 1988 to 2019 will be conducted. We will include studies on children ≤18 years old who suffer from mild, moderate and severe TBI as determined by the Glasgow Coma Scale that report neurocognitive outcomes in domains predetermined by the Diagnostic and Statistical Manual of Mental Disorders fifth edition criteria. Systematic reviews, meta-analyses, randomised controlled trials, case–control, cohort and cross-sectional studies will be included. References from systematic reviews and meta-analyses will be hand-searched for relevant articles. A meta-analysis will be performed and effect sizes will be calculated to summarise the magnitude of change in each neurocognitive domain compared at different timepoints and stratified by severity of TBI. Included studies will be pooled using pooled standardised mean differences with a random effects model to determine an overall effect. In the scenario that we are unable to pool the studies, we will perform a narrative analysis.Ethics and disseminationEthics approval is not required for this study.The authors of this study will publish and present the findings in a peer-reviewed journal as well as national and international conferences. The results of this study will provide understanding into the association between different severities of paediatric TBI and long-term neurocognitive outcomes.PROSPERO registration numberCRD42020152680.
Monte Carlo (MC) method is the gold standard dose calculation algorithm. Determination of the electron beam parameters for MC simulation is often estimated using trial and error methods. However, this can be tedious and time-consuming. This paper aims to validate MC simulated data using 1D gamma analysis for 6MV photon beam to obtain the optimal parameters. BEAMnrc codes were used to generate phase space files for conventional field sizes 10 × 10 cm 2 , 6 × 6 cm 2 , 4 × 4 cm 2 and small field sizes 2 × 2 cm 2 , 1 × 1 cm 2 , 0.5 × 0.5 cm 2 . For conventional field sizes, simulations were benchmarked against Golden Beam Data (GBD). Simulations for small fields were benchmarked against measurements obtained using EDGE Detector and PTW Diode SRS detector in a Sun Nuclear 3D scanner. Dose profiles in water were calculated using DOSXYZnrc codes. Initial reference parameters were approximated using average percentage dose differences of different mean electron energy and electron beam radial distribution (Full Width at Half Maximum, FWHM). Subsequently, the optimal parameters were validated by 1D gamma analysis using varying gamma criteria from γ 0.3%/0.3mm to γ 2.0%/2.0mm for depth dose and lateral dose profiles. Comparisons were performed along the central region at depth dose 1.6 cm . Optimal parameters were found to be unique for small field sizes. As field size decreases, smaller FWHM were required to match measured data. By using 95% passing rate, a generic set of optimal electron beam parameters in a MC model for all field sizes could be accurately determined. Our findings provide MC users a set of optimal parameters with sufficient accuracy for MC simulation work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.