SummaryALC1, a novel PARP1-stimulated chromatin-remodelling enzyme promotes DNA repair.Post-translational modifications play key roles in orchestrating chromatin plasticity. Although various chromatin-remodelling enzymes have been described that respond to specific histone modifications, little is known about the role of poly(ADP-ribose) in chromatin remodelling. Here, we identify a novel chromatin-remodelling enzyme, ALC1 (Amplified in Liver Cancer 1), that is specifically regulated by poly(ADP-ribosyl) ation. ALC1 binds poly(ADP-ribose) via a C-terminal Macro domain and catalyzes PARP1-stimulated nucleosome sliding, conferred by an N-terminal ISWI-related helicase core. Our results define ALC1 as a novel DNA damage-response protein, whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)-dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.The restricted accessibility of DNA within chromatin presents a barrier to DNA manipulations that require direct protein-DNA interactions (1-3). Processes such as transcription, repair and replication that require efficient DNA recognition are therefore dependent on the appropriate modulation of chromatin structure. Chromatin relaxation is a critical event that occurs during DNA repair and is associated with post-translational poly(ADP-ribose) (PAR) modification (4). PAR is synthesized in a reaction that utilizes NAD+ as a substrate by the PARP family of enzymes, of which PARP1 (and to a lesser extent PARP2) respond to DNA strand breaks (5-7). As a consequence of poly(ADP-
Replicated chromosomes are held together by the chromosomal cohesin complex from the time of their synthesis in S phase onward. This requires the replication fork-associated acetyl transferase Eco1, but Eco1's mechanism of action is not known. We identified spontaneous suppressors of the thermosensitive eco1-1 allele in budding yeast. An acetylation-mimicking mutation of a conserved lysine in cohesin's Smc3 subunit makes Eco1 dispensable for cell growth, and we show that Smc3 is acetylated in an Eco1-dependent manner during DNA replication to promote sister chromatid cohesion. A second set of eco1-1 suppressors inactivate the budding yeast ortholog of the cohesin destabilizer Wapl. Our results indicate that Eco1 modifies cohesin to stabilize sister chromatid cohesion in parallel with a cohesion establishment reaction that is in principle Eco1-independent.
Entry into mitosis in eukaryotes requires the activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 is opposed by protein phosphatases in two ways: They inhibit activation of Cdk1 by dephosphorylating the protein kinases Wee1 and Myt1 and the protein phosphatase Cdc25 (key regulators of Cdk1), and they also antagonize Cdk1's own phosphorylation of downstream targets. A particular form of protein phosphatase 2A (PP2A) containing a B55δ subunit (PP2A- B55δ) is the major protein phosphatase that acts on model CDK substrates in Xenopus egg extracts and has antimitotic activity. The activity of PP2A-B55δ is high in interphase and low in mitosis, exactly opposite that of Cdk1. We report that inhibition of PP2A-B55δ results from a small protein, known as α-endosulfine (Ensa), that is phosphorylated in mitosis by the protein kinase Greatwall (Gwl). This converts Ensa into a potent and specific inhibitor of PP2A-B55δ. This pathway represents a previously unknown element in the control of mitosis.
Mitochondrial complex I plays a key role in cellular energy production by transferring electrons from NADH to ubiquinone coupled to proton translocation across the membrane1,2. It is the largest protein assembly of the respiratory chain with total mass of 970 kDa3. Here we present a nearly complete atomic structure of ovine mitochondrial complex I at 3.9 Å resolution, solved by cryo-electron microscopy aided by crosslinking/mass-spectrometry mapping. All 14 conserved core and 31 mitochondria-specific supernumerary subunits are resolved within the L-shaped molecule. The hydrophilic matrix arm harbours FMN and 8 iron-sulphur clusters involved in electron transfer, and the membrane arm contains 78 transmembrane helices, mostly contributed by antiporter-like subunits involved in proton translocation. Supernumerary subunits form an interlinked, stabilizing shell around the conserved core. Tightly bound lipids (including cardiolipins) further stabilize interactions between the hydrophobic subunits. Subunits with possible regulatory roles contain additional cofactors, NADPH and two phosphopantetheine molecules, revealed to be involved in inter-subunit interactions. We observe two different conformations of the complex, which may be related to the conformationally driven coupling mechanism and to the active/deactive transition of the enzyme. Our structure provides insight into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations.The electrochemical proton gradient across the inner mitochondrial membrane required by ATP synthase is maintained by the electron transport chain (ETC) proton-pumping complexes I, III and IV1,2. Complex I (CI) is crucial for the entire process and even mildCorrespondence and requests for materials should be addressed to L. S. (sazanov@ist.ac.at). Author Contributions: K.F. purified complex I for grid preparation, prepared cryo-EM grids, acquired and processed EM data, and co-built the models; J.A.L. purified complex I for cross-linking experiments, analysed cross-linking data and co-built the models; G.D. performed cross-linking/mass-spectrometry experiments, K.K. performed model re-building in Rosetta and sequence alignments; G.D. and M.S. analysed cross-linking data; L.A.S. designed and supervised the project, processed and analysed data and wrote the manuscript, with contributions from all authors.The authors declare no competing financial interests.Author Information: The EM maps have been deposited in the EMDataBank under accession codes . The model has been deposited in the PDB under accession code 5LNK. Europe PMC Funders GroupAuthor Manuscript Nature. Author manuscript; available in PMC 2017 April 20. Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts complex I deficiencies can cause severe pathologies4. Mammalian CI is built of 45 (44 unique) subunits. Fourteen "core" subunits, conserved from bacteria, comprise the "minimal" form of the enzyme1,5, an L-shaped structure with seven su...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.