Sensitization and allergy to legumes can be influenced by different factors, such as exposure, geographical background, and food processing. Sensitization and the allergic response to legumes differs considerably, however, the reason behind this is not yet fully understood. The aim of this study is to investigate if there is a correlation between legume protein consumption and the prevalence of legume sensitization. Furthermore, the association between sensitization to specific peanut allergens and their concentration in peanut is investigated. Legume sensitization data (peanut, soybean, lupin, lentil, and pea) from studies were analyzed in relation to consumption data obtained from national food consumption surveys using the European Food Safety Authority (EFSA), Global Environment Monitoring System (GEMS), and What We Eat in America—Food Commodity Intake Database (WWEIA-FCID) databases. Data were stratified for children <4 years, children 4–18 years, and adults. Sufficient data were available for peanut to allow for statistical analysis. Analysis of all age groups together resulted in a low correlation between peanut sensitization and relative peanut consumption (r = 0.407), absolute peanut consumption (r = 0.468), and percentage of peanut consumers (r = 0.243). No correlation was found between relative concentrations of Ara h 1, 2, 3, 6, 7, and 8 in peanut and sensitization to these peanut allergens. The results indicate that the amount of consumption only plays a minor role in the prevalence of sensitization to peanut. Other factors, such as the intrinsic properties of the different proteins, processing, matrix, frequency, timing and route of exposure, and patient factors might play a more substantial role in the prevalence of peanut sensitization.
Scope No accepted and validated methods are currently available which can accurately predict protein allergenicity. In this study, the role of digestion and transport on protein allergenicity is investigated. Methods and results Peanut allergens (Ara h 1, 2, 3, and 6) and a milk allergen (β‐lactoglobulin) are transported across pig intestinal epithelium using the InTESTine model and afterward basophil activation is measured to assess the (remaining) functional properties. Additionally, allergens are digested by pepsin prior to epithelial transport and their allergenicity is assessed in a human mast cell activation assay. Remarkably, transported Ara h 1 and 3 are not able to activate basophils, in contrast to Ara h 2 and 6. Digestion prior to transport results in a significant increase in mast cell activation of Ara h 1 and 3 dependent on the length of digestion time. Activation of mast cells by Ara h 2 and 6 is unaffected by digestion prior to transport. Conclusions Digestion and transport influences the allergenicity of Ara h 1 and 3, but not of Ara h 2 and 6. The influence of digestion and transport on protein allergenicity may explain why current in vitro assays are not predictive for allergenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.