The paradigmatic assumption that REM sleep is the physiological equivalent of dreaming is in need of fundamental revision. A mounting body of evidence suggests that dreaming and REM sleep are dissociable states, and that dreaming is controlled by forebrain mechanisms. Recent neuropsychological, radiological, and pharmacological findings suggest that the cholinergic brain stem mechanisms that control the REM state can only generate the psychological phenomena of dreaming through the mediation of a second, probably dopaminergic, forebrain mechanism. The latter mechanism (and thus dreaming itself) can also be activated by a variety of nonREM triggers. Dreaming can be manipulated by dopamine agonists and antagonists with no concomitant change in REM frequency, duration, and density. Dreaming can also be induced by focal forebrain stimulation and by complex partial (forebrain) seizures during nonREM sleep, when the involvement of brainstem REM mechanisms is precluded. Likewise, dreaming is obliterated by focal lesions along a specific (probably dopaminergic) forebrain pathway, and these lesions do not have any appreciable effects on REM frequency, duration, and density. These findings suggest that the forebrain mechanism in question is the final common path to dreaming and that the brainstem oscillator that controls the REM state is just one of the many arousal triggers that can activate this forebrain mechanism. The “REM-on” mechanism (like its various NREM equivalents) therefore stands outside the dream process itself, which is mediated by an independent, forebrain “dream-on” mechanism.
The important contribution of genetic factors to the development of cognition and intelligence is widely acknowledged, but identification of these genes has proven to be difficult. Given a variety of evidence implicating the prefrontal cortex and its dopaminergic circuits in cognition, most of the research conducted to date has focused on genes regulating dopaminergic function. Here we review the genetic association studies carried out on catechol-O-methyltransferase (COMT) and the dopamine receptor genes, D1, D2 and D4. In addition, the evidence implicating another promising candidate gene, brain-derived neurotrophic factor (BDNF) in neuropsychological function, is assessed. Both the COMT val158met polymorphism and the BDNF val66met variant appear to influence cognitive function, but the specific neurocognitive processes involved continue to be a matter of debate. Part of the difficulty is distinguishing between false positives, pleiotropy and the influence of a general intelligence factor, g. Also at issue is the complexity of the relevant neuromolecular pathways, which make the inference of simple causal relationships difficult. The implications of molecular genetic cognitive research for psychiatry are discussed in light of these data.
It is commonly believed that consciousness is a higher brain function. Here we consider the likelihood, based on abundant neuroevolutionary data that lower brain affective phenomenal experiences provide the “energy” for the developmental construction of higher forms of cognitive consciousness. This view is concordant with many of the theoretical formulations of Sigmund Freud. In this reconceptualization, all of consciousness may be dependent on the original evolution of affective phenomenal experiences that coded survival values. These subcortical energies provided a foundation that could be used for the epigenetic construction of perceptual and other higher forms of consciousness. From this perspective, perceptual experiences were initially affective at the primary-process brainstem level, but capable of being elaborated by secondary learning and memory processes into tertiary-cognitive forms of consciousness. Within this view, although all individual neural activities are unconscious, perhaps along with secondary-process learning and memory mechanisms, the primal sub-neocortical networks of emotions and other primal affects may have served as the sentient scaffolding for the construction of resolved perceptual and higher mental activities within the neocortex. The data supporting this neuro-psycho-evolutionary vision of the emergence of mind is discussed in relation to classical psychoanalytical models.
This article applies the free energy principle to the hard problem of consciousness. After clarifying some philosophical issues concerning functionalism, it identifies the elemental form of consciousness as affect and locates its physiological mechanism (an extended form of homeostasis) in the upper brainstem. This mechanism is then formalized in terms of free energy minimization (in unpredicted contexts) where decreases and increases in expected uncertainty are felt as pleasure and unpleasure, respectively. Emphasis is placed on the reasons why such existential imperatives feel like something to and for an organism.
Data from the imaging literature have led to suggestions that permanent structural brain changes may be associated with bipolar disorder. Individuals diagnosed with bipolar disorder display deficits on a range of neuropsychological tasks in both the acute and euthymic phases of illness, and correlations between experienced number of affective episodes and task performance are commonly reported. These findings have renewed interest in the neuropsychological profile of individuals with bipolar disorder, with deficits of attention, learning and memory, and executive function, asserted to be present. This paper critically reviews five different potential causes of neurocognitive dysfunction in bipolar disorder: (i) iatrogenic, (ii) acute functional changes associated with depression or mania, (iii) permanent structural lesions of a neurodegenerative origin, (iv) permanent structural lesions that are neurodevelopmental in origin, and (v) permanent functional changes that are most likely genetic in origin. Although the potential cognitive effects of residual symptomatology and long-term medication use cannot be entirely excluded, we conclude that functional changes associated with genetically driven population variation in critical neural networks underpin both the neurocognitive and affective symptoms of bipolar disorder. The philosophical implications of this conclusion for neuropsychology are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.