Rho-associated protein kinase 2 (ROCK2) is a membrane-anchored, long, flexible, multidomain, multifunctional protein. Its functions can be divided into two categories: membrane-proximal and membrane-distal. A recent study concluded that membrane-distal functions require the fully extended conformation, and this conclusion was supported by electron microscopy. The present solution small-angle X-ray scattering (SAXS) study revealed that ROCK2 population is a dynamic mixture of folded and partially extended conformers. Binding of RhoA to the coiled-coil domain shifts the equilibrium towards the partially extended state. Enzyme activity measurements suggest that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains, but smaller substrate analogues do not. The present study reveals the dynamic behaviour of this long, dimeric molecule in solution, and our structural model provides a mechanistic explanation for a set of membrane-proximal functions while allowing for the existence of an extended conformation in the case of membrane-distal functions.
We have developed a unified, versatile vector set for expression of recombinant proteins, fit for use in any bacterial, yeast, insect or mammalian cell host. The advantage of this system is its versatility at the vector level, achieved by the introduction of a novel expression cassette. This cassette contains a unified multi-cloning site, affinity tags, protease cleavable linkers, an optional secretion signal, and common restriction endonuclease sites at key positions. This way, genes of interest and all elements of the cassette can be switched freely among the vectors, using restriction digestion and ligation without the need of polymerase chain reaction (PCR). This vector set allows rapid protein expression screening of various hosts and affinity tags. The reason behind this approach was that it is difficult to predict which expression host and which affinity tag will lead to functional expression. The new system is based on four optimized and frequently used expression systems (Escherichia coli pET, the yeast Pichia pastoris, pVL and pIEx for Spodoptera frugiperda insect cells and pLEXm based mammalian systems), which were modified as described above. The resulting vector set was named pONE series. We have successfully applied the pONE vector set for expression of the following human proteins: the tumour suppressor RASSF1A and the protein kinases Aurora A and LIMK1. Finally, we used it to express the large multidomain protein, Rho-associated protein kinase 2 (ROCK2, 164 kDa) and demonstrated that the yeast Pichia pastoris reproducibly expresses the large ROCK2 kinase with identical activity to the insect cell produced counterpart. To our knowledge this is among the largest proteins ever expressed in yeast. This demonstrates that the cost-effective yeast system can match and replace the industry-standard insect cell expression system even for large and complex mammalian proteins. These experiments demonstrate the applicability of our pONE vector set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.