The covalent marking of proteins by methyl group addition to arginine residues can promote their recognition by binding partners or can modulate their biological activity. A small family of gene products that catalyze such methylation reactions in eukaryotes (PRMTs) work in conjunction with a changing cast of associated subunits to recognize distinct cellular substrates. These reactions display many of the attributes of reversible covalent modifications such as protein phosphorylation or protein lysine methylation; however, it is unclear to what extent protein arginine demethylation occurs. Physiological roles for protein arginine methylation have been established in signal transduction, mRNA splicing, transcriptional control, DNA repair, and protein translocation.
There are nine protein arginine methyltransferases (PRMTs) encoded in mammalian genomes, the protein products of which catalyse three types of arginine methylation--monomethylation and two types of dimethylation. Protein arginine methylation is an abundant modification that has been implicated in signal transduction, gene transcription, DNA repair and mRNA splicing, among others. Studies have only recently linked this modification to carcinogenesis and metastasis. Sequencing studies have not generally found alterations to the PRMTs; however, overexpression of these enzymes is often associated with various cancers, which might make some of them viable targets for therapeutic strategies.
p53, the tumour suppressor and transcriptional activator, is regulated by numerous post-translational modifications, including lysine methylation. Histone lysine methylation has recently been shown to be reversible; however, it is not known whether non-histone proteins are substrates for demethylation. Here we show that, in human cells, the histone lysine-specific demethylase LSD1 (refs 3, 4) interacts with p53 to repress p53-mediated transcriptional activation and to inhibit the role of p53 in promoting apoptosis. We find that, in vitro, LSD1 removes both monomethylation (K370me1) and dimethylation (K370me2) at K370, a previously identified Smyd2-dependent monomethylation site. However, in vivo, LSD1 shows a strong preference to reverse K370me2, which is performed by a distinct, but unknown, methyltransferase. Our results indicate that K370me2 has a different role in regulating p53 from that of K370me1: K370me1 represses p53 function, whereas K370me2 promotes association with the coactivator 53BP1 (p53-binding protein 1) through tandem Tudor domains in 53BP1. Further, LSD1 represses p53 function through the inhibition of interaction of p53 with 53BP1. These observations show that p53 is dynamically regulated by lysine methylation and demethylation and that the methylation status at a single lysine residue confers distinct regulatory output. Lysine methylation therefore provides similar regulatory complexity for non-histone proteins and for histones.
H4K20 methylation is a broad chromatin modification that has been linked with diverse epigenetic functions. Several enzymes target H4K20 methylation, consistent with distinct mono-, di-, and trimethylation states controlling different biological outputs. To analyze the roles of H4K20 methylation states, we generated conditional null alleles for the two Suv4-20h histone methyltransferase (HMTase) genes in the mouse. Suv4-20h-double-null (dn) mice are perinatally lethal and have lost nearly all H4K20me3 and H4K20me2 states. The genome-wide transition to an H4K20me1 state results in increased sensitivity to damaging stress, since Suv4-20h-dn chromatin is less efficient for DNA double-strand break (DSB) repair and prone to chromosomal aberrations. Notably, Suv4-20h-dn B cells are defective in immunoglobulin class-switch recombination, and Suv4-20h-dn deficiency impairs the stem cell pool of lymphoid progenitors. Thus, conversion to an H4K20me1 state results in compromised chromatin that is insufficient to protect genome integrity and to process a DNA-rearranging differentiation program in the mouse.[Keywords: H4K20 methylation; Suv4-20h enzymes; DNA repair; genome integrity; B-cell differentiation; class-switch recombination] Supplemental material is available at http://www.genesdev.org. Received February 18, 2008; revised version accepted May 30, 2008. Histone lysine methylation is a central epigenetic modification in eukaryotic chromatin. Five major positions for lysine methylation exist in the histone N termini, each with distinct regulatory functions. The repressive methyl marks H3K9, H3K27, and H4K20 are involved in constitutive heterochromatin formation and gene repression, X inactivation, and Polycomb silencing, and in DNA damage repair, mitotic chromosome condensation, and gene regulation (Allis et al. 2007). Additional complexity arises through the fact that histone methylation can be present in three distinct states (mono, di, or tri), which may have different biological readouts depending on the association with specific binding partners. Although there has been significant insight in histone lysine methylation pathways, we still know very little about how the diverse methylation states affect chromatin biology.H4K20 methylation is evolutionarily conserved from Schizosaccharomyces pombe to man . In mammalian cells, H4K20me1 is exclusively induced by the PrSet7/KMT5A histone methyltransferase (HMTase) (Fang et al. 2002;Nishioka et al. 2002), where it has been linked with transcriptional repression (Karachentsev et al. 2005) and X inactivation (Kohlmaier et al. 2004). More recently, genome-wide profiling of H4K20me1 also revealed enrichment of this mark across actively transcribed genes (Papp and Muller 2006;Vakoc et al. 2006). H4K20me1 is very dynamic throughout the cell cycle and becomes highly enriched during S phase (Jorgensen et al. 2007;Tardat et al. 2007;Huen et al. 2008
Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.