Human T-lymphotropic virus type 1 (HTLV-1) is a complex retrovirus encoding regulatory and accessory genes in four open reading frames (ORF I to IV) of the pX region. Emerging evidence indicates an important role for the pX ORF I-encoded accessory protein p12 I in viral replication, but its contribution to viral pathogenesis remains to be defined. p12I is a conserved, membrane-associated protein containing four SH3-binding motifs (PXXP). Its interaction with the interleukin-2 (IL-2) receptor -and ␥-chains implies an involvement of p12 I in intracellular signaling pathways. In addition, we have demonstrated that expression of pX ORF I p12 I is essential for persistent infection in rabbits. In contrast, standard in vitro systems have thus far failed to demonstrate a contribution of p12 I to viral infectivity and ultimately cellular transformation. In this study we developed multiple in vitro coculture assays to evaluate the role of p12 I in viral infectivity in quiescent peripheral blood mononuclear cells to more accurately reflect the virus-cell interactions as they occur in vivo. Using these assays, we demonstrate a dramatic reduction in viral infectivity in quiescent T lymphocytes for a p12 mutant viral clone (ACH.p12) in comparison to the wild-type clone ACH. Moreover, addition of IL-2 and phytohemagglutinin during the infection completely rescued the ability of ACH.p12 to infect primary lymphocytes. When newly infected primary lymphocytes are used to passage virus, ACH.p12 also exhibited a reduced ability to productively infect activated lymphocytes. Our data are the first to demonstrate a functional role for pX ORF I in the infection of primary lymphocytes and suggest a role for p12 I in activation of host cells during early stages of infection.
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Manygag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed intrans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.