[1] Multiple episodes of Oligocene and younger silicic volcanism are represented in the high lava plateau of central and southeastern Oregon. From 12 Ma to Recent, volcanism is strongly bimodal with nearly equal volumes of basalt and rhyolite. It is characterized by moderate to high silica (SiO 2 >72 wt. %) rhyolitic tuffs and domes that are younger to the west, and widespread, tholeiitic basalts that show no temporal pattern. We report 18 new 40 Ar/ 39 Ar incremental heating ages on rhyolites, and establish that the timing of the age-progressive rhyolites is decoupled from basaltic pulses. This work expands on that of previous workers by clearly linking the High Lava Plains (HLP) and northwestern-most Basin and Range (NWBR) rhyolite volcanism into a single age-progressive trend. The spatial-temporal relationship of the rhyolite outcrops and regional tectonics indicate that subsidence due to increasingly dense crust creates large, primarily sediment-filled basins within the more volcanically active HLP. The westnorthwest age progression in rhyolitic volcanism is counter to the trend expected for a quasi-stationary mantle upwelling relative to North American plate motion. We attribute the rhyolitic age progression to mantle upwelling in response to slab rollback and steepening, and this is consistent with mantle anisotropy under the region and analog slab rollback models. This removes the necessity of deep mantle plume involvement. Laboratory experimental studies indicate that the geometry of the downgoing slab can focus upwelling or asthenospheric counterflow into a constricted band, resulting in greater volcanic volumes in the HLP as compared to the NWBR.
North American craton is well delineated only along the western Idaho shear zone, a steep structural boundary near the Idaho-Washington border that is coincident with an abrupt change in the initial 87 Sr/ 86 Sr of Mesozoic and Cenozoic magmatic rocks from <0.706 west to >0.706 east of the western Idaho shear zone (Armstrong et al., 1977; Manduca et al., 1992). Elsewhere, the location of the Proterozoic cratonic margin is more enigmatic but can be inferred from the location of the "0.706 line" (Fig.
Slabs and fragments of gray-black vesicular "rock," superficially resembling natural basalt but distinctive in chemistry and mineralogy, were excavated at the second-millennium B.C. Mesopotamian city of Mashkan-shapir, about 80 kilometers south of Baghdad, Iraq. Most of this material appears to have been deliberately manufactured by the melting and slow cooling of local alluvial silts. The high temperatures (about 1200 degreesC) required and the large volume of material processed indicate an industry in which lithic materials were manufactured ("synthetic basalt") for grinding grain and construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.