Metriorhynchoid crocodylians represent the pinnacle of marine specialization within Archosauria. Not only were\ud they a major component of the Middle Jurassic–Early Cretaceous marine ecosystems, but they provide further\ud examples that extinct crocodilians did not all resemble their modern extant relatives. Here, we use a varied toolkit\ud of techniques, including phylogenetic reconstruction, geometric morphometrics, diversity counts, discrete character\ud disparity analysis, and biomechanical finite-element analysis (FEA), to examine the macroevolutionary history of\ud this clade. All analyses demonstrate that this clade became more divergent, in terms of biodiversity, form, and\ud function, up until the Jurassic–Cretaceous boundary, after which there is no evidence for recovery or further\ud radiations. A clear evolutionary trend towards hypercarnivory in Dakosaurus is supported by phylogenetic\ud character optimization, morphometrics, and FEA, which also support specialized piscivory within Rhacheosaurus\ud and Cricosaurus. Within Metriorhynchoidea, there is a consistent trend towards increasing marine specialization,\ud with the hypermarine Cricosaurus exhibiting numerous convergences with other Mesozoic marine reptiles (e.g. loss\ud of the deltopectoral crest and retracted external nares). In addition, biomechanics, morphometrics, and characterdisparity\ud analyses consistently distinguish the two newly erected metriorhynchid subfamilies. This study illustrates\ud that together with phylogeny, quantitative assessment of diversity, form, and function help elucidate the\ud macroevolutionary pattern of fossil clades
Modern crocodylians are a morphologically conservative group, but extinct relatives (crocodylomorphs) experimented with a wide range of diets, behaviors, and body sizes. Among the most unusual of these fossil groups is the thalattosuchians, an assemblage of marine-dwellers that transitioned from semiaquatic species (teleosaurids and kin) into purely open-ocean forms (metriorhynchids) during the Jurassic and Cretaceous Periods (ca 191-125 million years ago). Thalattosuchians can give insight into the origin of modern crocodylian morphologies and how anatomy and behavior change during a major evolutionary transition into a new habitat. Little is known, however, about their brains, sensory systems, cranial sinuses, and vasculature. We here describe the endocranial anatomy of a well-preserved specimen of the Jurassic semiaquatic teleosaurid Steneosaurus cf. gracilirostris using X-ray micro-CT. We find that this teleosaurid still had an ear well attuned to hear on land, but had developed large internal carotid and orbital arteries that likely supplied salt glands, previously thought to be present in only the fully pelagic metriorhynchids. There is no great gulf in endocranial anatomy between this teleosaurid and the metriorhynchids, and some of the features that later permitted metriorhynchids to invade the oceanic realm were apparently first developed in semiaquatic taxa. Compared to modern crocodylians, Steneosaurus cf. gracilirostris has a more limited set of pharyngotympanic sinuses, but it is unclear whether this relates to its aquatic habitat or represents the primitive condition of crocodylomorphs that was later elaborated. Anat Rec, 299:1511-1530, 2016. © 2016 Wiley Periodicals, Inc.
The holotype and referred specimens of Geosaurus giganteus, a metriorhynchid crocodile from the Tithonian (Upper Jurassic) of Germany, is redescribed, along with a historical overview of the genus and species. This taxon is unique among metriorhynchids as its serrated, strongly lateromedially compressed dentition is arranged as opposing blades, suggesting it was adapted to efficiently slice through fleshy prey. A new phylogenetic analysis of Crocodylomorpha is presented, which finds G. giganteus to be nested within what is currently considered Dakosaurus, whereas the other species currently assigned to Geosaurus form a clade with Enaliosuchus and the holotype of Cricosaurus. The phyletic relationship of G. giganteus with other metriorhynchids indicates that the current definition of the genus Geosaurus is polyphyletic, and that the inclusion of subsequent longirostrine species to this genus is in error. The re-analysis presented herein demonstrates Geosaurus to be composed of three species sensu stricto. The appropriate taxonomic amendments to the Metriorhynchidae are also provided.
Background Dakosaurus and Plesiosuchus are characteristic genera of aquatic, large-bodied, macrophagous metriorhynchid crocodylomorphs. Recent studies show that these genera were apex predators in marine ecosystems during the latter part of the Late Jurassic, with robust skulls and strong bite forces optimized for feeding on large prey.Methodology/Principal FindingsHere we present comprehensive osteological descriptions and systematic revisions of the type species of both genera, and in doing so we resurrect the genus Plesiosuchus for the species Dakosaurus manselii. Both species are diagnosed with numerous autapomorphies. Dakosaurus maximus has premaxillary ‘lateral plates’; strongly ornamented maxillae; macroziphodont dentition; tightly fitting tooth-to-tooth occlusion; and extensive macrowear on the mesial and distal margins. Plesiosuchus manselii is distinct in having: non-amblygnathous rostrum; long mandibular symphysis; microziphodont teeth; tooth-crown apices that lack spalled surfaces or breaks; and no evidence for occlusal wear facets. Our phylogenetic analysis finds Dakosaurus maximus to be the sister taxon of the South American Dakosaurus andiniensis, and Plesiosuchus manselii in a polytomy at the base of Geosaurini (the subclade of macrophagous metriorhynchids that includes Dakosaurus, Geosaurus and Torvoneustes).Conclusions/SignificanceThe sympatry of Dakosaurus and Plesiosuchus is curiously similar to North Atlantic killer whales, which have one larger ‘type’ that lacks tooth-crown breakage being sympatric with a smaller ‘type’ that has extensive crown breakage. Assuming this morphofunctional complex is indicative of diet, then Plesiosuchus would be a specialist feeding on other marine reptiles while Dakosaurus would be a generalist and possible suction-feeder. This hypothesis is supported by Plesiosuchus manselii having a very large optimum gape (gape at which multiple teeth come into contact with a prey-item), while Dakosaurus maximus possesses craniomandibular characteristics observed in extant suction-feeding odontocetes: shortened tooth-row, amblygnathous rostrum and a very short mandibular symphysis. We hypothesise that trophic specialisation enabled these two large-bodied species to coexist in the same ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.