The shape of the active site of the receptor for sweet molecules was previously defined on the basis of a combination of both rigid (saccharins) and flexible (aspartame) molds. In this paper, the sweetness receptor is refined with use of the shapes of 3-anilino-2-styryl-3H-naphtho[1,2-d]imidazolesulfonate (sweet) and of 3-anilino-2-phenyl-3H-naphtho[1,2-d]imidazolesulfonate (tasteless), two large and almost completely rigid tastants. The minimum-energy conformations of the flexible portions of these tastants have been determined by using a detailed conformational analysis based on ab initio calculations. The refined receptor site is still consistent with all previously examined sweet molecules. In order to unequivocally assign the prochiral beta-CH2 protons of the Phe moiety of aspartame, (2S,3S)-[2H]-alpha-L-Asp-L-PheOMe was synthesized and examined by 500-MHz 1H NMR spectroscopy. The results indicate that the minimum-energy conformation for aspartame in water, DMSO-d6, and CDCl3 (as a crown ether complex) is different from that originally proposed (FIIDII instead of FIDII, according to a notation referred to the side chains). Although this conformation is not directly consistent with the shape of the sweet receptor, the interconversion of FIIDII to FIDII was found to require only 1 kcal/mol. Furthermore, a 120-ps molecular dynamics simulation in vacuo confirms the high flexibility of aspartame and the accessibility of the FIDII conformer whose topology is fully consistent with our model.
The primary purpose was to examine the effect of incremental exercise on a noncompatible response time task. Participants (N=9) undertook a 4-choice noncompatible response time task under 3 conditions, following rest and during exercise at 70% and 100% of their maximum power output. Reaction and movement times were the dependent variables. Maximum power output had been previously established on an incremental test to exhaustion. A repeated-measures multivariate analysis of variance yielded a significant effect of exercise intensity on the task, observation of the separate univariate repeated-measures analyses of variance showed that only movement time was significantly affected. Post hoc Tukey tests indicated movement time during maximal intensity exercise was significantly faster than in the other two conditions. The secondary purpose of the study was to assess whether increases in plasma concentrations of adrenaline and nor-adrenaline during exercise and power output would act as predictor variables of reaction and movement times during exercise. Catecholamine concentrations were based on venous blood samples taken during the maximum power output test. None of the variables were significant predictors of reaction time. Only power output was a significant predictor of movement time (R2 = .24). There was little support for the notion that peripheral concentrations of catecholamines directly induce a central nervous system response.
Excavation and Direct Examination of buried piping using conventional non-destructive examination (NDE) has been the traditional inspection approach for decades and remains the only quantitative method for piping evaluations in plants when internal in-line inspection tools cannot be used due to geometry or other constraints. This “difficult to assess” piping presents many challenges, including limited effectiveness of traditional indirect inspection tools, high cost and operational concerns associated with excavations, and the ability to evaluate only a small sampling of a piping system. Many inspection technologies exist for buried pipe assessments; however, no indirect techniques provide the ability to yield quantitative wall loss values suitable for ASME fitness for service calculations beyond what’s exposed in the excavation. An evolving technology, guided wave testing (GWT), has many applications including the ability to provide assessment information beyond the excavation. In this paper, the application of GWT for buried piping inspection will be discussed. We will review: principles behind its operation; the competitive technologies on the market; challenges for the technology; management of data within the Electric Power Research Institute (EPRI) industry standard buried pipe database (BPWorks™ 2.0); trending; case histories showing how GWT can be used to extend the knowledge gained during an excavation by screening adjacent areas for more significant corrosion than observed in the excavated and exposed area; coupling GWT results with other inspection technologies to gain an enhanced interpretation of the overall condition of the line; and how to incorporate this data into an effective structural and/or leakage integrity program as part of the reasonable assurance process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.