The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.
The growth hormone releasing peptides (GHRPs) hexarelin, ipamorelin, alexamorelin, GHRP-1, GHRP-2, GHRP-4, GHRP-5, and GHRP-6 are all synthetic met-enkephalin analogues that include unnatural D-amino acids. They were designed specifically for their ability to stimulate growth hormone release and may serve as performance enhancing drugs. To regulate the use of these peptides within the horse racing industry and by human athletes, a method is presented for the extraction, derivatization, and detection of GHRPs from equine and human urine. This method takes advantage of a highly specific solid-phase extraction combined with a novel derivatization method to improve the chromatography of basic peptides. The method was validated with respect to linearity, repeatability, intermediate precision, specificity, limits of detection, limits of confirmation, ion suppression, and stability. As proof of principle, all eight GHRPs or their metabolites could be detected in urine collected from rats after intravenous administration.
The Dermorphins are a family of peptides that act as potent agonists of the opioid μ receptor. Originally identified as a seven amino acid peptide on the skin of the South American Phyllomedusa frog, peptide chemists have since developed a large number of Dermorphin variants, many with superior opioid activity to the original peptide. Dermorphins are unique among the peptide opioid agonists as they appear to have a limited ability to cross the blood brain barrier, producing effects on both the central and peripheral nervous systems. It is this ability of Dermorphins to provide central anaesthesia after intravenous or subcutaneous administration that allows their use as analogues of the opioid class of drugs. Recently, illicit use of the Dermorphin peptide in the racing industry has shown the need for an analytical method to control the use of these peptides. We present a high-throughput liquid chromatography-tandem mass spectrometry screen for 17 Dermorphin peptides in equine urine and plasma with limits of detection down to 5 pg/mL. The peptide extraction technique is also suitable for use in human urine.
CJC‐1295 is a 30 amino acid peptide‐based drug that stimulates the release of growth hormone (GH) from the pituitary gland. It is unique among performance‐enhancing peptides due to the presence of a reactive maleimidopropionic acid group that covalently links the peptide to free thiols on the surface of plasma proteins. Once conjugated, CJC‐1295 remains active in the bloodstream for significantly longer than non‐conjugated peptide‐based drugs that are rapidly excreted. Conjugation of CJC‐1295 to plasma proteins prevents its detection by top‐down mass‐spectrometry‐based peptide screening protocols as it effectively becomes a macromolecular protein with an undefined molecular weight. Using a pair of monoclonal antibodies raised against the CJC‐1295 peptide, we present an immuno‐polymerase chain reaction (I‐PCR) assay that is capable of detecting the CJC‐1295‐protein conjugate at concentrations down to 0.8 pg/mL. Detection of endogenous equine GHRH necessitated a screening threshold for CJC‐1295 in equine plasma of 50 pg/mL. The effectiveness of the assay for controlling the illicit use of CJC‐1295 was confirmed in equine blood samples after administration in thoroughbred race horses.
The recombinant human erythropoietins epoetin alfa (Eprex®), darbepoetin (Aranesp®) and methoxy polyethylene glycol-epoetin beta (Mircera®) were administered to greyhounds for 7, 10 and 14 days respectively. Blood and urine samples were collected and analysed for erythropoietin by ELISA, LC-MS/MS and western blotting. Limits of confirmation in plasma for western blotting and LC-MS/MS methods ranged from a low of 2.5mIU/mL, and closely matched the sensitivity of ELISA screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.