Current neural induction protocols in human ES cells (hESCs) rely on embryoid body formation, stromal feeder co-culture, or selective survival conditions; each strategy displaying significant drawbacks such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient for inducing rapid and complete neural conversion of hESCs under adherent culture conditions. Temporal fate analysis reveals a transient FGF5+ epiblast-like stage followed by PAX6+ neural cells competent of rosette formation. Initial cell density determines the ratio of CNS versus neural crest progeny. Directed differentiation of human iPSCs into midbrain dopamine and spinal motoneurons confirm robustness and general applicability of the novel induction protocol. Noggin/SB431542 based neural induction should greatly facilitate the use of hESC and hiPSCs in regenerative medicine and disease modeling and obviate the need for stromal feeder or embryoid body based protocols.
SUMMARYThe isolation of human induced pluripotent stem cells (iPSCs)1-3 offers a novel strategy for modeling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs4-7. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy caused by a point mutation in IKBKAP8 involved in transcriptional elongation9. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood due to the lack of an appropriate model system.Here we report the derivation of patient specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC derived lineages demonstrates tissue specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell based assays revealing marked defects in neurogenic differentiation and migration behavior. Finally, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining novel insights into human disease pathogenesis and treatment.
Summary Reprogramming somatic cells to induced pluripotent stem cells (iPSCs), resets their identity back to an embryonic age, and thus presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson’s disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD-iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine-hydroxylase (TH) expression and enlarged mitochondria or Lewy body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.
SUMMARY Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Subsequent maturation of hESC-derived melanocytes yields pure populations matching the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak and Chediak-Higashi Syndrome patient-specific iPSCs faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders.
Human pluripotent stem cell (hPSC)-derived neural crest (NC) cells present a valuable tool for modeling aspects of human NC development, including cell fate specification, multipotency and cell migration. hPSC-derived NC cells are also suitable for modeling human disease and as a renewable cell source for applications in regenerative medicine. Here we provide protocols for the step-wise differentiation of human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) into neuroectodermal and NC cells using either the MS5 coculture system or a novel defined culture method based on pharmacological inhibition of bone morphogenetic protein and transforming growth factor-beta signaling pathways. Furthermore, we present protocols for the purification and propagation of hPSC-NC cells using flow cytometry and defined in vitro culture conditions. Our protocol has been validated in multiple independent hESC and hiPSC lines. The average time required for generating purified hPSC-NC precursors using this protocol is 2-5 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.