Objectives-Height is inversely associated with cardiovascular disease mortality risk and has shown variable associations with cancer incidence and mortality. The interpretation of findings from previous studies has been constrained by data limitations. Associations between height and specific causes of death were investigated in a large general population cohort of men and women from the West of Scotland. Design-Prospective observational study. Results-Over the follow up period 3347 men and 2638 women died. Height is inversely associated with all cause, coronary heart disease, stroke, and respiratory disease mortality among men and women. Adjustment for socioeconomic position and cardiovascular risk factors had little influence on these associations. Height is strongly associated with forced expiratory volume in one second (FEV 1 ) and adjustment for FEV 1 considerably attenuated the association between height and cardiorespiratory mortality. Smoking related cancer mortality is not associated with height. The risk of deaths from cancer unrelated to smoking tended to increase with height, particularly for haematopoietic, colorectal and prostate cancers. Stomach cancer mortality was inversely associated with height. Adjustment for socioeconomic position had little influence on these associations. Conclusion-Height serves partly as an indicator of socioeconomic circumstances and nutritional status in childhood and this may underlie the inverse associations between height and adulthood cardiorespiratory mortality. Much of the association between height and cardiorespiratory mortality was accounted for by lung function, which is also partly determined by exposures acting in childhood. The inverse association between height and stomach cancer mortality probably reflects Helicobacter pylori infection in childhood resulting in-or being associated with-shorter height. The positive associations between height and several cancers unrelated to smoking could reflect the influence of calorie intake during childhood on the risk of these cancers. Setting-Renfrew
Objective To estimate trends between 1972-6 and 1996 in the prevalences of asthma and hay fever in adults.
BackgroundTwo single-nucleotide polymorphisms, rs1051730 and rs16969968, located within the nicotinic acetylcholine receptor gene cluster on chromosome 15q25 locus, are associated with heaviness of smoking, risk for lung cancer, and other smoking-related health outcomes. Previous studies have typically relied on self-reported smoking behavior, which may not fully capture interindividual variation in tobacco exposure.MethodsWe investigated the association of rs1051730 and rs16969968 genotype (referred to as rs1051730–rs16969968, because these are in perfect linkage disequilibrium and interchangeable) with both self-reported daily cigarette consumption and biochemically measured plasma or serum cotinine levels among cigarette smokers. Summary estimates and descriptive statistical data for 12 364 subjects were obtained from six independent studies, and 2932 smokers were included in the analyses. Linear regression was used to calculate the per-allele association of rs1051730–rs16969968 genotype with cigarette consumption and cotinine levels in current smokers for each study. Meta-analysis of per-allele associations was conducted using a random effects method. The likely resulting association between genotype and lung cancer risk was assessed using published data on the association between cotinine levels and lung cancer risk. All statistical tests were two-sided.ResultsPooled per-allele associations showed that current smokers with one or two copies of the rs1051730–rs16969968 risk allele had increased self-reported cigarette consumption (mean increase in unadjusted number of cigarettes per day per allele = 1.0 cigarette, 95% confidence interval [CI] = 0.57 to 1.43 cigarettes, P = 5.22 × 10−6) and cotinine levels (mean increase in unadjusted cotinine levels per allele = 138.72 nmol/L, 95% CI = 97.91 to 179.53 nmol/L, P = 2.71 × 10−11). The increase in cotinine levels indicated an increased risk of lung cancer with each additional copy of the rs1051730–rs16969968 risk allele (per-allele odds ratio = 1.31, 95% CI = 1.21 to 1.42).ConclusionsOur data show a stronger association of rs1051730–rs16969968 genotype with objective measures of tobacco exposure compared with self-reported cigarette consumption. The association of these variants with lung cancer risk is likely to be mediated largely, if not wholly, via tobacco exposure.
Background: Taller people and those with better lung function are at reduced risk of coronary heart disease (CHD). Biological mechanisms for these associations are not well understood, but both measures may be markers for early life exposures. Some studies have shown that leg length, an indicator of pre-pubertal nutritional status, is the component of height most strongly associated with CHD risk. Other studies show that height-CHD associations are greatly attenuated when lung function is controlled for. This study examines (1) the association of height and the components of height (leg length and trunk length) with CHD risk factors and (2) the relative strength of the association of height and forced expiratory volume in one second (FEV 1 ) with risk factors for CHD. Subjects and methods: Cross sectional analysis of data collected at detailed cardiovascular screening examinations of 1040 men and 1298 women aged 30-59 whose parents were screened in 1972-76. Subjects come from 1477 families and are members of the Midspan Family Study. Setting: The towns of Renfrew and Paisley in the West of Scotland. Results: Taller subjects and those with better lung function had more favourable cardiovascular risk factor profiles, associations were strongest in relation to FEV 1 . Higher FEV 1 was associated with lower blood pressure, cholesterol, glucose, fibrinogen, white blood cell count, and body mass index. Similar, but generally weaker, associations were seen with height. These associations were not attenuated in models controlling for parental height. Longer leg length, but not trunk length, was associated with lower systolic and diastolic blood pressure. Longer leg length was also associated with more favourable levels of cholesterol and body mass index than trunk length. Conclusions: These findings provide indirect evidence that measures of lung development and pre-pubertal growth act as biomarkers for childhood exposures that may modify an individual's risk of developing CHD. Genetic influences do not seem to underlie height-CHD associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.