Cellular longevity is a complex process relevant to age-related diseases including but not limited to chronic illness such as diabetes and metabolic syndromes. Two gene families have been shown to play a role in the genetic regulation of longevity; the Sirtuin and FOXO families. It is also established that nuclear Sirtuins interact with and under specific cellular conditions regulate the activity of FOXO gene family proteins. Thus, we hypothesize that a mitochondrial Sirtuin (SIRT3) might also interact with and regulate the activity of the FOXO proteins. To address this we used HCT116 cells overexpressing either wild-type or a catalytically inactive dominant negative SIRT3. For the first time we establish that FOXO3a is also a mitochondrial protein and forms a physical interaction with SIRT3 in mitochondria. Overexpression of a wild-type SIRT3 gene increase FOXO3a DNA-binding activity as well as FOXO3a dependent gene expression. Biochemical analysis of HCT116 cells over expressing the deacetylation mutant, as compared to wild-type SIRT3 gene, demonstrated an overall oxidized intracellular environment, as monitored by increase in intracellular superoxide and oxidized glutathione levels. As such, we propose that SIRT3 and FOXO3a comprise a potential mitochondrial signaling cascade response pathway.
Group of North America for both years of existence (2014)(2015). Eighteen original investigations were analyzed. RESULTS: The costeffectiveness for prostate cancer-the single most common diagnosis currently treated with PBT-was suboptimal. PBT was the most cost-effective option for several pediatric brain tumors. PBT costs for breast cancer were increased but were favorable for appropriately selected patients with left-sided cancers at high risk of cardiac toxicity and compared with brachytherapy for accelerated partial breast irradiation. For non-small cell lung cancer (NSCLC), the greatest cost-effectiveness benefits using PBT were observed for locoregionally advanced-but not early stage-tumors. PBT offered superior cost-effectiveness in selected head/neck cancer patients at higher risk of acute mucosal toxicities. Similar cost-effectiveness was observed for PBT, enucleation, and plaque brachytherapy in patients with uveal melanoma. CONCLUSIONS: With greatly limited amounts of data, PBT offers promising cost-effectiveness for pediatric brain tumors, well-selected breast cancers, locoregionally advanced NSCLC, and high-risk head/neck cancers. Heretofore, it has not been demonstrated that PBT is cost-effective for prostate cancer or early stage NSCLC. Careful patient selection is absolutely critical to assess cost-effectiveness. Together with increasing PBT availability, clinical trial evidence, and ongoing major technological improvements, cost-effectiveness data and conclusions from this analysis could change rapidly. Cancer 2016;122:1483
Purpose To test the hypothesis that a genomic classifier (GC) would predict biochemical failure (BF) and distant metastasis (DM) in men receiving radiation therapy (RT) after radical prostatectomy (RP). Methods and Materials Among patients who underwent post-RP RT, 139 were identified for pT3 or positive margin, who did not receive neoadjuvant hormones and had paraffin-embedded specimens. Ribonucleic acid was extracted from the highest Gleason grade focus and applied to a high-density-oligonucleotide microarray. Receiver operating characteristic, calibration, cumulative incidence, and Cox regression analyses were performed to assess GC performance for predicting BF and DM after post-RP RT in comparison with clinical nomograms. Results The area under the receiver operating characteristic curve of the Stephenson model was 0.70 for both BF and DM, with addition of GC significantly improving area under the receiver operating characteristic curve to 0.78 and 0.80, respectively. Stratified by GC risk groups, 8-year cumulative incidence was 21%, 48%, and 81% for BF (P<.0001) and for DM was 0, 12%, and 17% (P=.032) for low, intermediate, and high GC, respectively. In multivariable analysis, patients with high GC had a hazard ratio of 8.1 and 14.3 for BF and DM. In patients with intermediate or high GC, those irradiated with undetectable prostate-specific antigen (PSA ≤0.2 ng/mL) had median BF survival of >8 years, compared with <4 years for patients with detectable PSA (>0.2 ng/mL) before initiation of RT. At 8 years, the DM cumulative incidence for patients with high GC and RTwith undetectable PSA was 3%, compared with 23% with detectable PSA (P=.03). No outcome differences were observed for low GC between the treatment groups. Conclusion The GC predicted BF and metastasis after post-RP irradiation. Patients with lower GC risk may benefit from delayed RT, as opposed to those with higher GC; however, this needs prospective validation. Genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.
This study is the first comprehensive, integrated approach to examine grade-specific changes in gene expression along the entire neoplastic spectrum of cervical intraepithelial neoplasia (CIN) in the process of cervical carcinogenesis. This was accomplished by identifying gene expression signatures of disease progression using cDNA microarrays to analyze RNA from laser-captured microdissected epithelium and underlying stroma from normal cervix, graded CINs, cancer, and patientmatched normal cervical tissues. A separate set of samples were subsequently validated using a linear mixed model that is ideal to control for interpatient gene expression profile variation, such as age and race. These validated genes were ultimately used to propose a genomically based model of the early events in cervical neoplastic transformation. In this model, the CIN 1 transition coincides with a proproliferative/immunosuppression gene signature in the epithelium that probably represents the epithelial response to human papillomavirus infection. The CIN 2 transition coincides with a proangiogenic signature, suggesting a cooperative signaling interaction between stroma and tumor cells. Finally, the CIN 3 and squamous cell carcinoma antigen transition coincide with a proinvasive gene signature that may be a response to epithelial tumor cell overcrowding. This work strongly suggests that premalignant cells experience a series of microenvironmental stresses at the epithelium/ stroma cell interface that must be overcome to progress into a transformed phenotype and identifies the order of these events in vivo and their association with specific CIN transitions. [Cancer Res 2007;67(15):7113-23]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.