The physical immobilization of hyaluronic acid (HA) as a wetting agent in contact lens applications was investigated using model silicone hydrogels prepared by co-polymerizing methacryloxy propyl tris (trimethylsiloxy) silane (Tris) and hydroxyethylmethacrylate (HEMA). Two different molecular weights of HA were investigated, as well as various Tris/HEMA ratios. Cross-linked HA, while only present in small amounts, increased water uptake and hydrophilicity in the materials containing 10% Tris; however, no changes were observed in the 4% Tris materials. The presence of the HA was further confirmed by increases in glass transition temperature as measured by differential scanning calorimetry. Lysozyme adsorption was dramatically decreased for materials containing cross-linked HA. The incorporation of HA, previously demonstrated to decrease protein adsorption to model conventional hydrogel materials, may have significant potential for improving the wetting and other properties of silicone hydrogel contact lens materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.