Load balancing algorithms play a vital role in enhancing performance in data centers and cloud networks. Due to the massive size of these systems, scalability challenges, and especially the communication overhead associated with load balancing mechanisms, have emerged as major concerns. Motivated by these issues, we introduce and analyze a novel class of load balancing schemes where the various servers provide occasional queue updates to guide the load assignment.We show that the proposed schemes strongly outperform JSQ(d ) strategies with comparable communication overhead per job, and can achieve a vanishing waiting time in the many-server limit with just one message per job, just like the popular JIQ scheme. The proposed schemes are particularly geared however towards the sparse feedback regime with less than one message per job, where they outperform corresponding sparsified JIQ versions.We investigate fluid limits for synchronous updates as well as asynchronous exponential update intervals. The fixed point of the fluid limit is identified in the latter case, and used to derive the queue length distribution. We also demonstrate that in the ultra-low feedback regime the mean stationary waiting time tends to a constant in the synchronous case, but grows without bound in the asynchronous case.
Abstract-Load balancing algorithms play a crucial role in delivering robust application performance in data centers and cloud networks. Recently, strong interest has emerged in Jointhe-Idle-Queue (JIQ) algorithms, which rely on tokens issued by idle servers in dispatching tasks and outperform power-of-d policies. Specifically, JIQ strategies involve minimal information exchange, and yet achieve zero blocking and wait in the manyserver limit. The latter property prevails in a multiple-dispatcher scenario when the loads are strictly equal among dispatchers. For various reasons it is not uncommon however for skewed load patterns to occur. We leverage product-form representations and fluid limits to establish that the blocking and wait then no longer vanish, even for arbitrarily low overall load. Remarkably, it is the least-loaded dispatcher that throttles tokens and leaves idle servers stranded, thus acting as bottleneck.Motivated by the above issues, we introduce two enhancements of the ordinary JIQ scheme where tokens are either distributed non-uniformly or occasionally exchanged among the various dispatchers. We prove that these extensions can achieve zero blocking and wait in the many-server limit, for any subcritical overall load and arbitrarily skewed load profiles. Extensive simulation experiments demonstrate that the asymptotic results are highly accurate, even for moderately sized systems.
We present an overview of scalable load balancing algorithms which provide favorable delay performance in large-scale systems, and yet only require minimal implementation overhead. Aimed at a broad audience, the paper starts with an introduction to the basic load balancing scenario -referred to as the supermarket model -consisting of a single dispatcher where tasks arrive that must immediately be forwarded to one of N single-server queues. The supermarket model is a dynamic counterpart of the classical balls-and-bins setup where balls must be sequentially distributed across bins.A popular class of load balancing algorithms are so-called power-of-d or JSQ(d) policies, where an incoming task is assigned to a server with the shortest queue among d servers selected uniformly at random. As the name reflects, this class includes the celebrated Join-the-Shortest-Queue (JSQ) policy as a special case (d = N ), which has strong stochastic optimality properties and yields a mean waiting time that vanishes as N grows large for any fixed subcritical load. However, a nominal implementation of the JSQ policy involves a prohibitive communication burden in large-scale deployments. In contrast, a simple random assignment policy (d = 1) does not entail any communication overhead, but the mean waiting time remains constant as N grows large for any fixed positive load.In order to examine the fundamental trade-off between delay performance and implementation overhead, we consider an asymptotic regime where the diversity parameter d(N ) depends on N . We investigate what growth rate of d(N ) is required to match the optimal performance of the JSQ policy on fluid and diffusion scale, and achieve a vanishing waiting time in the limit. The results demonstrate that the asymptotics for the JSQ(d(N )) policy are insensitive to the exact growth rate of d(N ), as long as the latter is sufficiently fast, implying that the optimality of the JSQ policy can asymptotically be preserved while dramatically reducing the communication overhead.Stochastic coupling techniques play an instrumental role in establishing the asymptotic optimality and universality properties, and augmentations of the coupling constructions allow these properties to be extended to infinite-server settings and network scenarios. We additionally show how the communication overhead can be reduced yet further by the so-called Join-the-Idle-Queue (JIQ) scheme, leveraging memory at the dispatcher to keep track of idle servers.In the present paper we review scalable load balancing algorithms (LBAs) which achieve excellent delay performance in large-scale systems and yet only involve low implementation overhead. LBAs play a critical role in distributing service requests or tasks (e.g. compute jobs, data base look-ups, file transfers) among servers or distributed resources in parallel-processing systems. The analysis and design of LBAs has attracted strong attention in recent years, mainly spurred by crucial scalability challenges arising in cloud networks and data centers with massive...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.