It is known that when a colored surface is viewed for some time and a blank screen is presented afterwards, an afterimage can be perceived in the complementary color. Color appearances in afterimages are due to adaptation of retinal cones and they are especially vivid when contours, presented after the adapting image, coincide with the blurred edges of the afterimage [1]. We report here that one and the same colored stimulus can induce multiple, differently colored afterimages, and that colored afterimages can also be perceived at regions that were not adapted to color. The observed filling-in of afterimage colors strongly depends on contours presented after the colored stimulus, revealing color-contour interactions that resemble filling-in of 'real' colors.
Summary Attention is crucial for visual perception because it allows the visual system to effectively use its limited resources by selecting behaviourally and cognitively relevant stimuli from the large amount of information impinging on the eyes. Reflexive, stimulus-driven attention is essential for successful interactions with the environment because it can, for example, speed up responses to life threatening events. It is commonly believed that exogenous attention operates in the retinotopic coordinates of the early visual system. Here, using a novel experimental paradigm [1], we show that a non-retinotopic cue improves both accuracy and reaction times in a visual search task. Furthermore, the influence of the cue is limited both in space and time, a characteristic typical of exogenous cueing. These and other recent findings show that many more aspects of vision are processed non-retinotopically than previously thought.
Neural suppression plays an important role in cortical function, including sensory, memory, and motor systems. It remains, however, relatively poorly understood. A paradigmatic case arises when conflicting images are presented to the two eyes. These images can compete for awareness, and one is usually strongly suppressed. The mechanisms that resolve such interocular conflict remain unclear. Suppression could arise solely from “winner-take-all” competition between neurons responsive to each eye. Alternatively, suppression could also depend upon neurons detecting interocular conflict. Here, we provide physiological evidence in human visual cortex for the latter: suppression depends upon conflict-sensitive neurons. We recorded steady-state visual evoked potentials (SSVEP), and used the logic of selective adaptation. The amplitude of SSVEP responses at intermodulation frequencies strengthened as interocular conflict in the stimulus increased, suggesting the presence of neurons responsive to conflict. Critically, adaptation to conflict both reduced this SSVEP effect, and increased the amount of conflict needed to produce perceptual suppression. The simplest account of these results is that interocular-conflict-sensitive neurons exist in human cortex: adaptation likely reduced the responsiveness of these neurons which in turn raised the amount of conflict required to produce perceptual suppression. Similar mechanisms may be used to resolve other varieties of perceptual conflict.
It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.