The potential environmental benefits of hybrid electric regional turboprop aircraft in terms of fuel consumption are investigated. Lithium-air batteries are used as energy source in combination with conventional fuel. A validated design and analysis framework is extended with sizing and analysis modules for hybrid electric propulsion system components. In addition, a modified Bréguet range equation, suitable for hybrid electric aircraft, is introduced. The results quantify the limits in range and performance for this type of aircraft as a function of battery technology level. A typical design for 70 passengers with a design range of 1528 km, based on batteries with a specific energy of 1000 Wh/kg, providing 34% of the shaft power throughout the mission, yields a reduction in emissions by 28%.
Keywords Hybrid electric propulsion
This paper presents a methodology for the design of the primary flight control surfaces, in terms of size, number and location, for fixed wing aircraft (conventional or unconventional). As test case, the methodology is applied to a 300 passenger variant of the Prandtl Plane. This box wing aircraft is deemed to have low induced drag compared to conventional aircraft. The methodology is completely physics based and includes an aerodynamic analysis, followed by a control allocation algorithm and an analysis of the flight mechanics. The design has to fulfill a set of handling qualities requirements with a minimum total control surface area. An optimization algorithm is used to find the best design. Results indicate that this is possible with ailerons outboard on both wings, elevators inboard on both wings and conventional rudders in the vertical tail. The configuration allows for pure torque control and also direct lift control in the longitudinal axis. These features can potentially enhance airfield performance.
Nomenclature
This paper describes the development and validation of a high fidelity simulation model of the Bell 412 helicopter for handling qualities and flight control investigations. The base-line model features a rigid, articulated blade-element formulation of the main rotor, with flap and lag degrees of freedom. The Bell 412 HP engine/governor dynamics are represented by a second-order system. Other key features of the base-line model include a finite-state dynamic inflow model and lag damper dynamics. The base-line model gives excellent agreement with flight-test data over the speed range 15-120kt for on-axis responses. Prediction of off-axis responses is less accurate. Several model enhancement options were introduced to obtain an improved off-axis response. It is shown that the pitch/roll off-axis responses in transient manoeuvres can be improved significantly by including wake geometry distortion effects in the Peters-He finite-state dynamic inflow model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.