Neuropil is a fundamental form of tissue organization within brains
1
. In neuropils, densely packed neurons synaptically interconnect into precise circuit architecture
2
,
3
, yet the structural and developmental principles governing this nanoscale precision remain largely unknown
4
,
5
. Here, we use diffusion condensation, an iterative data coarse-graining algorithm
6
, to identify nested circuit structures within the
C. elegans
neuropil (called the nerve ring). We show that the nerve ring neuropil is largely organized into four strata composed of related behavioral circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy
7
,
8
, coupled with lineage-tracing and cell-tracking algorithms
9
,
10
, to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles underlying nerve ring neuropil architecture and function, and a pioneer-neuron-based, temporal progression of outgrowth that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within brains.
SUMMARY
During M-phase entry in metazoans with open mitosis, the concerted action of mitotic kinases disassembles nuclei and promotes assembly of kinetochores—the primary microtubule attachment sites on chromosomes. At M-phase exit, these major changes in cellular architecture must be reversed. Here, we show that the conserved kinetochore-localized nucleoporin MEL-28/ELYS docks the catalytic subunit of protein phosphatase 1 (PP1c) to direct kinetochore disassembly-dependent chromosome segregation during oocyte meiosis I, and nuclear assembly during the transition from M-phase to interphase. During oocyte meiosis I, MEL-28-PP1c disassembles kinetochores in a timely manner to promote elongation of the acentrosomal spindles that segregate homologous chromosomes. During nuclear assembly, MEL-28 recruits PP1c to the periphery of decondensed chromatin where it directs formation of a functional nuclear compartment. Thus, a pool of phosphatase activity associated with a kinetochore-localized nucleoporin contributes to two key events that occur during M-phase exit in metazoans: kinetochore disassembly and nuclear reassembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.