Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formylhydroxylamine derivative, BB-3497, and a related natural hydroxamic acid antibiotic, actinonin, as potent and selective inhibitors of PDF. To elucidate the interactions that contribute to the binding affinity of these inhibitors, we determined the crystal structures of BB-3497 and actinonin bound to Escherichia coli PDF at resolutions of 2.1 and 1.75 Å, respectively. In both complexes, the active-site metal atom was pentacoordinated by the side chains of Cys 90, His 132, and His 136 and the two oxygen atoms of N-formyl-hydroxylamine or hydroxamate. BB-3497 had activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis, and activity against some gram-negative bacteria. Time-kill analysis showed that the mode of action of BB-3497 was primarily bacteriostatic. The mechanism of resistance was via mutations within the formyltransferase gene, as previously described for actinonin. While actinonin and its derivatives have not been used clinically because of their poor pharmacokinetic properties, BB-3497 was shown to be orally bioavailable. A single oral dose of BB-3497 given 1 h after intraperitoneal injection of S. aureus Smith or methicillin-resistant S. aureus protected mice from infection with median effective doses of 8 and 14 mg/kg of body weight, respectively. These data validate PDF as a novel target for the design of a new generation of antibacterial agents.Ribosome-mediated synthesis of proteins starts with a methionine residue. In prokaryotes, the amino group of the methionyl moiety carried by the initiator tRNA fMet is N formylated by formyltransferase prior to its incorporation into a polypeptide. Consequently, N-formylmethionine is always present at the N terminus of a nascent bacterial polypeptide. However, most mature proteins do not retain the N-formyl group or the terminal methionine residue. Following translation, the formyl group is hydrolyzed by peptide deformylase (PDF), which is necessary for further processing at the N terminus by methionine aminopeptidase (32). Deformylation is therefore a crucial step in bacterial protein biosynthesis, and PDF is essential for bacterial growth (23). The gene encoding PDF (def) is present in all sequenced pathogenic bacterial genomes and has no mammalian counterpart, making it an attractive target for antibacterial chemotherapy. Although the enzyme has been known for 30 years, it has proved difficult to isolate and characterize due to its apparent instability. Recently, two X-ray crystal structures and a solution structure of PDF have been determined (5, 9, 12), identifying PDF as a new class of metalloenzyme related in structure to the metalloproteinase superfamily. ...