This paper presents the results of integral heat transfer measurements taken in a square ribbed cooling channel configuration for evaluating heat transfer and turbulent flow characteristics in convective cooled gas turbine blades and draws a comparison with numerical results. The heated section of the channel is either smooth or equipped with 45 ∘ crossed ribs on two opposite walls. The first part of the paper describes the instrumentation and experimental setup in detail. The second part compares the numerical calculations with the experimentally determined results. The turbulent heat transfer is calculated using two common algebraic models and three implemented explicit algebraic models, each time in combination with an explicit algebraic Reynolds stress model. The numerical calculations show that the use of higher-order models for the turbulent heat flux provides a higher accuracy of the heat transfer prediction for both configurations. The best model is able to predict almost all results within the experimental uncertainties.
This paper presents two different numerical methods to predict the thermal load of a convection-cooled gas-turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas-turbine rotor blade equipped with an academic convection-cooling system and investigated at a cascade test-rig. It consists of three cooling channels, which are connected outside the blade, so allowing cooling air temperature measurements. Both methods use FE models to obtain the temperature distribution of the solid blade. The difference between these methods lies in the generation of the heat transfer coefficients along the cooling channel walls which serve as a boundary condition for the FE model. One method, referred to as the FEM1D method, uses empirical one-dimensional correlations known from the available literature. The other method, the FEM2D method, uses three-dimensional CFD simulations to obtain two-dimensional heat transfer coefficient distributions. The numerical results are compared to each other as well as to experimental data, so that the benefits and limitations of each method can be shown and validated. Overall, this paper provides an evaluation of the different methods which are used to predict temperature distributions in convection-cooled gas-turbines with regard to accuracy, numerical cost and the limitations of each method. The temperature profiles obtained in all methods generally show good agreement with the experiments. However, the more detailed methods produce more accurate results by causing higher numerical costs.
Endwall losses and secondary air flow are considered to be responsible for a significant part of the flow losses in compressors. Their reduction can be achieved by 3D blade design and non-axisymmetric endwalls. In order to evaluate the potential of both effects, an analysis of secondary air flow and the origin of losses is realized. This paper presents multiple numerical simulations to determine the predominant phenomena at the origin of losses in the hub region of the last rotor of the Rig 250, a 4-stage compressor with cantilevered stators and rotor tip clearances. In a first study (I), an inviscid endwall condition at the hub of rotor 4 has been investigated. This condition strongly reduces the secondary air flow from the pressure side to the suction side and shows a significant reduction of the losses in the hub region. But the typical loss distribution over the blade height with a local maximum between 5 and 15 % of the blade height is not changed. Through this study the losses generated by the endwall boundary layer and the resulting secondary air flow are evaluated. Moreover, the potential for endwall contouring and 3D blading in the hub region is estimated, which can be used in future design studies. In the second study (II), ideal radial distributions of the velocity and of the inflow angles at the inlet of the rotor 4 are set. The results show the dependencies between the inflow condition and the loss production in the blade passage near the endwall. These studies sets the theoretical maximal potential for improvement techniques, like endwall contouring or the modification of the upstream stator.
This paper presents developing secondary flow and heat transfer measurements in a ribbed cooling channel. Experiments are carried out for Reynolds number ranging from 25,000–140,000. Regionally averaged local heat transfer measurements are conducted using heated copper segments. Flow measurements are carried out using a miniature five-hole pressure probe and presented for cross sections at intervals of 1.8 hydraulic diameters dh in flow direction. Results are compared to numerical simulations using explicit algebraic Reynolds stress and turbulent heat transfer models. The paper focuses on the entrance region where secondary flow structure has not emerged yet. The findings show that the well-known secondary flow structure of the crossed rib configuration, consisting of one large single rotating secondary flow, is not established until approximately 6–7 dh in main flow direction. Instead two opposed vortices are identified which dominate the flow characteristics and provide an increase in heat transfer of up to 15–20% when compared to the periodically developed flow condition. Thus, for the first time to the author’s knowledge, the paper describes in detail the developing secondary flow in a crossed rib arrangement and links it to the heat transfer distribution observed. In summary, this paper stresses the importance of the developing flow region for the design process in convection cooled gas turbines, especially for short channels of high pressure blades and vanes, as it has a significant effect on cooling channel heat transfer performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.