Mobile weather radars often utilize rapid-scan strategies when collecting observations of severe weather. Various techniques have been used to improve volume update times, including the use of agile and multibeam radars. Imaging radars, similar in some respects to phased arrays, steer the radar beam in software, thus requiring no physical motion. In contrast to phased arrays, imaging radars gather data for an entire volume simultaneously within the field of view (FOV) of the radar, which is defined by a broad transmit beam. As a result, imaging radars provide update rates significantly exceeding those of existing mobile radars, including phased arrays. The Advanced Radar Research Center (ARRC) at the University of Oklahoma (OU) is engaged in the design, construction, and testing of a mobile imaging weather radar system called the atmospheric imaging radar (AIR). Initial tests performed with the AIR demonstrate the benefits and versatility of utilizing beamforming techniques to achieve high spatial and temporal resolution. Specifically, point target analysis was performed using several digital beamforming techniques. Adaptive algorithms allow for improved resolution and clutter rejection when compared to traditional techniques. Additional experiments were conducted during two severe weather events in Oklahoma. Several digital beamforming methods were tested and analyzed, producing unique, simultaneous multibeam measurements using the AIR.
Abstract-We present a new multi-rate architecture for decoding irregular LDPC codes in IEEE 802.16e WiMax standard. The proposed architecture utilizes the value-reuse property of offset min-sum, block-serial scheduling of computations and turbo decoding message passing algorithm. The decoder has the following advantages: 55% savings in memory, reduction of routers by 50%, and increase of throughput by 2x when compared to the recent state-of-the-art decoder architectures.Index Terms-low-density parity-check (LDPC) codes, offset min-sum, on-the-fly computation, decoder architecture, layered decoding, turbo-decoding message passing, irregular LDPC,IEEE 802.16e.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.