Background While left ventricular (LV) adaptation to regular, intense exercise is thoroughly studied, data are scarce concerning the right ventricular (RV) mechanical changes and their continuum with athletic performance. Aims Accordingly, our aim was to characterize biventricular morphology and function and their relation to sex, age, and sports classes in a large cohort of elite athletes using 3D echocardiography. Methods Elite, competitive athletes (n = 422) and healthy, sedentary volunteers (n = 55) were enrolled. LV and RV end-diastolic volumes (EDVi), and ejection fractions (EF) were measured. In order to characterize biventricular mechanics, LV and RV global longitudinal (GLS) and circumferential strains (GCS) were quantified. All subjects underwent cardiopulmonary exercise testing to determine peak oxygen uptake (VO2/kg). Results Athletes had significantly higher LV and RV EDVi compared with controls (athletes vs. controls; LV EDVi: 81 ± 13 vs. 62 ± 11 ml/m2, RV EDVi: 82 ± 14 vs. 63 ± 11 ml/m2; p < 0.001). Concerning biventricular systolic function, athletes had significantly lower resting LV and RV EF (LV EF: 57 ± 4 vs. 61 ± 5%; RV EF: 55 ± 5 vs. 59 ± 5%; p < 0.001). The exercise-induced relative decrease in LV GLS (9.5 ± 10.7%) and LV GCS (10.7 ± 9.8%) was similar, however, the decrement in RV GCS (14.8 ± 17.8%) was disproportionately larger compared with RV GLS (1.7 ± 15.4%, p < 0.01). RV EDVi was found to be the strongest independent predictor of VO2/kg by multivariable linear regression. Conclusions Resting LV mechanics of the athlete's heart is characterized by a balanced decrement in GLS and GCS, however, RV GCS decreases disproportionately compared with RV GLS. Moreover, this mechanical pattern is associated with better exercise capacity.
After SARS-CoV-2 infection, strict recommendations for return-to-sport were published. However, data are insufficient about the long-term effects on athletic performance. After suffering SARS-CoV-2 infection, and returning to maximal-intensity trainings, control examinations were performed with vita-maxima cardiopulmonary exercise testing (CPET). From various sports, 165 asymptomatic elite athletes (male: 122, age: 20y (IQR: 17-24y), training:16 h/w (IQR: 12–20 h/w), follow-up:93.5 days (IQR: 66.8–130.0 days) were examined. During CPET examinations, athletes achieved 94.7 ± 4.3% of maximal heart rate, 50.9 ± 6.0 mL/kg/min maximal oxygen uptake (V̇O2max), and 143.7 ± 30.4L/min maximal ventilation. Exercise induced arrhythmias (n = 7), significant horizontal/descending ST-depression (n = 3), ischemic heart disease (n = 1), hypertension (n = 7), slightly elevated pulmonary pressure (n = 2), and training-related hs-Troponin-T increase (n = 1) were revealed. Self-controlled CPET comparisons were performed in 62 athletes: due to intensive re-building training, exercise time, V̇O2max and ventilation increased compared to pre-COVID-19 results. However, exercise capacity decreased in 6 athletes. Further 18 athletes with ongoing minor long post-COVID symptoms, pathological ECG (ischemic ST-T changes, and arrhythmias) or laboratory findings (hsTroponin-T elevation) were controlled. Previous SARS-CoV-2-related myocarditis (n = 1), ischaemic heart disease (n = 1), anomalous coronary artery origin (n = 1), significant ventricular (n = 2) or atrial (n = 1) arrhythmias were diagnosed. Three months after SARS-CoV-2 infection, most of the athletes had satisfactory fitness levels. Some cases with SARS-CoV-2 related or not related pathologies requiring further examinations, treatment, or follow-up were revealed.
In various team sports, such as handball, referees work on the court by continuously moving with the players. Therefore, their physical fitness also has an impact on their reaction time, which could affect their professional decisions. The cardiorespiratory fitness status of healthy Hungarian elite handball referees was examined via body composition analysis and vita maxima cardiopulmonary exercise testing with lactate measurements. One hundred referees were examined (age: 29.0 ± 7.9 years; male: 64.0%; training: 4.3 ± 2.0 hours/week; ratio of former elite handball players: 39.0%; 51.0% first and 49.0% second division referees of the Hungarian National Handball Leagues). A resting heart rate (HR) of 79.0 ± 12.6 BPM was measured. On the basis of the body composition analysis the fat-free mass index proved to be 19.9 ± 2.6 kg/m2. The referees achieved a maximal oxygen uptake (V̇O2max) of 44.6 ± 6.1 ml/kg/min, with a maximal HR of 187.2 ± 11.1 BPM (which was 98.1 ± 4.6% of their calculated maximal HR) and a peak lactate of 9.2 ± 3.2 mmol/l at 557.1 ± 168.3 sec on our continuous speed, increasing slope treadmill protocol. Second division referees were younger, on a weekly average they trained more, achieved higher treadmill exercise time (respectively, 463.8 ± 131.9 vs 658.4 ± 143.9 sec, p < 0.001) and anaerobic threshold time (respectively, 265.8 ± 100.9 vs 348.2 ± 117.1 sec, p < 0.001), while the two different divisional referees had similar V̇O2max values. Regarding our physical fitness measurements, huge individual differences were observed between the referees (exercise time range: 259.0–939.0 sec, V̇O2max range: 25.3–62.4 ml/kg/min). Since it can affect their performance as referees, individual training planning, regular physical fitness measurements, and strict selection methods are suggested.
The significance of cardiology screening of referees is not well established. Cardiovascular risk factors and diseases were examined in asymptomatic Hungarian elite handball referees undergoing extended screening: personal/family history, physical examination, 12-lead ECG, laboratory tests, body-composition analysis, echocardiography, and cardiopulmonary exercise testing. Holter-ECG (n = 8), blood pressure monitorization (n = 10), cardiac magnetic resonance imaging (CMR; n = 27) and computer tomography (CCT; n = 4) were also carried out if needed. We examined 100 referees (age: 29.6±7.9years, male: 64, training: 4.3±2.0 hours/week), cardiovascular risk factors were: positive medical history: 24%, overweight: 10%, obesity: 3%, dyslipidaemia: 41%. Elevated resting blood pressure was measured in 38%. Stress-ECG was positive due to ECG-changes in 16%, due to elevated exercise blood pressure in 8%. Echocardiography and/or CMR identified abnormalities in 19%. A significant number of premature ventricular contractions was found on the Holter-ECG in two cases. The CCT showed myocardial bridge or coronary plaques in one-one case. We recommended lifestyle changes in 58%, new/modified antihypertensive or lipid-lowering therapy in 5%, iron-supplementation in 22%. By our results, a high percentage of elite Hungarian handball referees had cardiovascular risk factors or diseases, which, combined with physical and psychological stress, could increase the possibility of cardiovascular events. Our study draws attention to the importance of cardiac screening in elite handball referees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.