Chromatographic retention time (RT) is a powerful characteristic used to identify, separate, or rank molecules in a mixture. With accumulated RT data, it becomes possible to develop deep learning approaches...
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of a community effort, the “Billion molecules against Covid-19 challenge”, to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 potentially active molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (Nsp12 domain), and (alpha) spike protein S. Overall, 27 potential inhibitors were experimentally confirmed by binding-, cleavage-, and/or viral suppression assays and are presented here. All results are freely available and can be taken further downstream without IP restrictions. Overall, we show the effectiveness of computational techniques, community efforts, and communication across research fields (i.e., protein expression and crystallography, in silico modeling, synthesis and biological assays) to accelerate the early phases of drug discovery.
The increasing interest in chromatin conformation inside the nucleus and the availability of genome-wide experimental data make it possible to develop computational methods that can increase the quality of the data and thus overcome the limitations of high experimental costs. Here we develop a deep-learning approach for increasing Hi-C data resolution by appending additional information about genome sequence. In this approach, we utilize two different deep-learning algorithms: the image-to-image model, which enhances Hi-C resolution by itself, and the sequence-to-image model, which uses additional information about the underlying genome sequence for further resolution improvement. Both models are combined with the simple head model that provides a more accurate enhancement of initial low-resolution Hi-C data. The code is freely available in a GitHub repository: https://github.com/koritsky/DL2021 HI-C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.