Burial of organic material in marine sediments represents a dominant natural mechanism of long-term carbon sequestration globally, but critical aspects of this carbon sink remain unresolved. Investigation of surface sediments led to the proposition that on average 10-20% of sedimentary organic carbon is stabilised and physically protected against microbial degradation through binding to reactive metal (e.g. iron and manganese) oxides. Here we examine the long-term efficiency of this rusty carbon sink by analysing the chemical composition of sediments and pore waters from four locations in the Barents Sea. Our findings show that the carbon-iron coupling persists below the uppermost, oxygenated sediment layer over thousands of years. We further propose that authigenic coprecipitation is not the dominant factor of the carbon-iron bounding in these Arctic shelf sediments and that a substantial fraction of the organic carbon is already bound to reactive iron prior deposition on the seafloor.
Organic-rich sediments of the southernmost Chilean Pacific coast and its fjord system constitute an important component of the global marine carbon budget. Sediment records from Trampa and Caribe bays and Churruca fjord in the western Magellan fjord system have been analyzed with the goal of understanding the factors controlling carbon accumulation and its regional fluctuation throughout the Holocene. The individual response in paleoproductivity at the different sites and related variations in accumulation rates document a very complex interplay among local and regional-scale environmental changes, and coastline elevation across the Holocene. Shallow sill basins close to the Pacific coast, as the ones studied here, are particularly sensitive to these processes, having responded with strong productivity changes throughout the Holocene.A Bayesian mixed model approach, using sediment archived provenance proxies, indicates that components of terrestrial plants and soils washed-out into these basins contribute with a variable proportion (20-80 wt%) of the total accumulated organic carbon. Accumulation rates of terrestrial carbon increase with the amount of precipitation in the hyper-humid mountain area, but also reflect distinct Holocene plant successions as well as longterm development of soil and vegetation cover that strongly overprint the direct precipitation impact. Over the Holocene accumulation rates of biogenic carbonate and aquatic-marine organic carbon range between 5 and 118 kg m À 2 kyr À 1 and 0.3-20 kg m À 2 kyr À 1 , respectively. This variability depends on water column structure and conditions, which are regulated by the degree of marine transgression as a function of post glacial sea level rise and isostatic uplift as well as precipitation-related surface water freshening. In the Bahia Trampa record, a significant change in accumulation rates indicates a marine transgression at ca. 12.2 kyr BP, when the global sea level was 60-70 m lower than today and eustatic rise overcame isostatic rebound rates. In Caribe and Trampa records, CaCO 3 accumulation rates were higher at ca. 7 kyr BP. The Churruca record shows organic carbon accumulation rates up to 36.2 kg m À 2 kyr À 1 during the early Holocene.
The Nansen Legacy paleo cruise was carried out from September 26 to October 20, 2018 with RV “Kronprins Haakon”. The cruise took place in the northern Barents Sea and the Nansen Basin, and it went through the sea ice to 83.3 N. The overriding objective of the cruise was to reconstruct the natural variability and range of sea ice cover and Atlantic Water through flow in the Barents Sea on longer time scales. During the cruise four ocean moorings were deployed in northwest Barents Sea, where one ARGO float was also deployed. Twelve “paleo stations” were identified using multibeam and sub bottom profilers. At these stations, short and long sediment cores were obtained. This cruise report gives an overview of methods used and samples taken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.