The food component 5-hydroxymethylfurfural is supposed to have antioxidative properties and is therefore used as an acting agent in a novel anticancer infusion solution, named Karal®, and an oral supplementation. Previous studies showed that after oral and intravenous application, the substance is completely decomposed to its metabolites: 5-hydroxymethylfuroic acid, 2,5-furandicarboxylic acid, and N-(hydroxymethyl)furoyl glycine. The formation of a fourth metabolite, namely 5-sulphoxymethylfurfural, is still not clarified according to literature. Due to commercial unavailability, synthesis of 5-sulphoxymethylfurfural was conducted and a synthesis procedure for N-(hydroxymethyl)furoyl glycine had to be developed. Identification of the synthesised compounds was proven by LC-MS and NMR. An appropriate HPLC method was established to obtain good separation of the four possible metabolic substances and 5-hydroxymethylfurfural within 12 min via a HILIC column (150 × 4.6 mm, 5 μm) using a gradient grade system switching from mobile phase A (ACN/ammonium formate 100 mM, pH 2.35, 95:5, v/v) to mobile phase B (ACN/ammonium formate 100 mM, pH 2.35, 85:15, v/v). The procedure was afterward validated following ICH guidelines in terms of selectivity, linearity, precision, LOD, and LOQ.
Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM.
In traditional Asian medicinal systems, preparations of the root and stem bark of Magnolia species are widely used to treat anxiety and other nervous disturbances. The biphenyl-type neolignans honokiol and magnolol are the main constituents of Magnolia bark extracts. In the central nervous system, Magnolia bark preparations that contain honokiol are thought to primarily interact with γ-aminobutyric acid A (GABAA) receptors. However, stress responses inherently involve the noradrenergic system, which has not been investigated in the pharmacological mechanism of honokiol. We present here interactions of honokiol and other synthesized biphenyl-type neolignans and diphenylmethane analogs with the norepinephrine transporter (NET), which is responsible for the synaptic clearance of norepinephrine and the target of many anxiolytics. Of the synthesized compounds, 16 are new chemical entities, which are fully characterized. The 52 compounds tested show mild, non-potent interactions with NET (IC50 > 100 µM). It is thus likely that the observed anxiolytic effects of, e.g., Magnolia preparations, are not due to direct interaction with the noradrenergic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.