The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector. In this study, we used gene silencing and a directional MF to show that mammalian-like Cry2 is necessary for a genuine directional response to periodic rotations of the GMF vector in two insect species. Longer wavelengths of light required higher photon fluxes for a detectable behavioral response, and a sharp detection border was present in the cyan/green spectral region. Both observations are consistent with involvement of the FADox, FAD•− and FADH -redox forms of flavin. The response was lost upon covering the eyes, demonstrating that the signal is perceived in the eye region. Immunohistochemical staining detected Cry2 in the hemispherical layer of laminal glia cells underneath the retina. Together, these findings identified the eye-localized Cry2 as an indispensable component and a likely photoreceptor of the directional GMF response. Our study is thus a clear step forward in deciphering the in vivo effects of GMF and supports the interaction of underlying mechanism with the visual system. magnetoreception | cryptochrome | light spectrum | locomotor activity | circadian genes
SUMMARYThe sense that allows birds to orient themselves by the Earth's magnetic field can be disabled by an oscillating magnetic field whose intensity is just a fraction of the geomagnetic field intensity and whose oscillations fall into the medium or high frequency radio wave bands. This remarkable phenomenon points very clearly at one of two existing alternative magnetoreception mechanisms in terrestrial animals, i.e. the mechanism based on the radical pair reactions of specific photosensitive molecules. As the first such study in invertebrates, our work offers evidence that geomagnetic field reception in American cockroach is sensitive to a weak radio frequency field. Furthermore, we show that the 'deafening' effect at Larmor frequency 1.2MHz is stronger than at different frequencies. The parameter studied was the rise in locomotor activity of cockroaches induced by periodic changes in the geomagnetic North positions by 60deg. The onset of the disruptive effect of a 1.2MHz field was found between 12nT and 18nT whereas the threshold of a doubled frequency field 2.4MHz fell between 18nT and 44nT. A 7MHz field showed no impact even in maximal 44nT magnetic flux density. The results indicate resonance effects rather than non-specific bias of procedure itself and suggest that insects may be equipped with the same magnetoreception system as the birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.