Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid–triazole–spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2–4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Supramolecular chirality of amyloid fibrils, protein aggregates related to many neurodegenerative diseases, is a remarkable property associated with fibril structure and polymorphism. Since its discovery almost 10 years ago there is still little understanding of this phenomenon, including the cause of the highly enhanced vibrational circular dichroism (VCD) intensity arising from fibril supramolecular chirality. In this study, VCD spectra, enhanced by filament supramolecular chirality, are presented for lysozyme and insulin fibrils above and below pH 2 and after deuterium exchange, above and below pD 2. Supramolecular chirality (observed by VCD) and fibril morphology (documented by atomic force microscopy) are not affected by protein deuteriation. In D O the fibril VCD sign pattern changes to fewer bands, with implications for the amide I/II origin of enhanced VCD intensity. Separation of amide I and II signals will facilitate calculations of enhanced VCD spectra of amyloid fibrils and enable a better understanding of the origin of the VCD sign pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.