Prosodic boundaries in speech are of great relevance to both speech synthesis and audio annotation. In this paper, we apply the wav2vec 2.0 framework to the task of detecting these boundaries in speech signal, using only acoustic information. We test the approach on a set of recordings of Czech broadcast news, labeled by phonetic experts, and compare it to an existing text-based predictor, which uses the transcripts of the same data. Despite using a relatively small amount of labeled data, the wav2vec2 model achieves an accuracy of 94% and F1 measure of 83% on within-sentence prosodic boundaries (or 95% and 89% on all prosodic boundaries), outperforming the text-based approach. However, by combining the outputs of the two different models we can improve the results even further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.