Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics.
Municipal solid waste landfilling, landfilling process and landfill reclamation result in leachate, which may be dangerous to the environment. Municipal solid waste leachate phytotoxicity tests were performed using the toxicity test and a subchronic toxicity pot experiment by direct application of leachate to reference soil in 5, 25, and 50% concentration for a period of 28 days. White mustard (Sinapis alba L.) seeds were exposed to different leachate dilution. Leachate were collected monthly in 2018 in the period from April to September. Furthermore, pH, conductivity, and dissolved oxygen were measured. The inhibition results on Sinapis alba L. seeds in the tested leachate samples ranged from −18.02 to 39.03%. Lower concentration of leachate showed a stimulating effect (only for Sample 1 and Sample 2 at 5% concentration). It was found out that leachate taken at the landfill is phytotoxic. The results of measurements are based on rainfall which affects the quantity and quality of the leachate. The values of germinated seeds/growing plants from the subchronic toxicity pot experiment ranged from 80 to 104%; therefore, the leachate is considered phytotoxic. However, it was confirmed that leachate may be used for landfill irrigation.
As a rubber annular coat of rim wheels, tyres are inevitable parts of all vehicles in modern times. As to their composition, however, they represent a risk for the environment. During the use of tyres, tyre tread patterns become abraded, which results in its gradual wear and necessary re- placement. These micro and nano particles are then gradually extracted into the environment, namely soils and waters. Our research study was focused on the assessment of subchronical phytotoxicity (pot trial with a mixture of substrate and predetermined ratio of abrasion products lasting 28 days) and biological tests (testing phytotoxicity of leaches with predetermined ratio of abrasion products on Petri dishes). The biological tests were comprised two plant species—seeds of white mustard (Sinapis alba L.) and garden cress (Lepidium sativum L.). In the mixtures of substrate with determined shares of abrasion products (5%, 25%, 50% and 75%), respiration of CO2 was also established by means of soil microbial respiration (Solvita CO2-Burst). Substrates with 5% and 25% abrasion proportions showed increased biological activity as well as increased CO2-C emissions. The increasing share of abrasion products resulted in decreasing biological activity and decreasing CO2-C emissions. The results of subchronical phytotoxicity ranged from 62% to 94% with values below 90% indicating substrate phytotoxicity. The results of biological tests focused on the phytotoxicity of tested samples exhibiting values from 35% to 70% with respect to the germination index with values below 66% indicating the phytotoxicity of tyre abrasion products.
Illegal dumps and landfills with disposed of tires are a fact of today, which should not be neglected as they represent a great ecological burden for the environment, affect the surrounding nature and disturb the landscape. This research was focused on testing the phytotoxicity of aqueous leachates from the fractions of tires in two sets of experiments—to simulate laboratory conditions (tire leaching in distilled water) and natural conditions (tire leaching in water from a recipient) using the Phytotoxkit testing kit (kit for the establishment of inhibition/stimulation effect on the root development) and the watercress test of phytotoxicity (biological method for the assessment of leachate phytotoxicity). Plants whose seeds were selected for the test were watercress (Lepidium sativum L.) and white mustard (Sinapis alba L.). The aqueous leachate was tested for 38 weeks. During the experiment, physical and chemical parameters were measured at intervals of 14 days by the testing instrument HACH TEST KIT: electric conductivity (EC), amount of dissolved oxygen (LDO) and pH. Results of root growth inhibition (IR) on the seeds of Lepidium sativum L. and Sinapis alba L. exhibited values ranging from 11.73% to 47.74% in the tested samples. Results of germination index (GI) on the seeds of Lepidium sativum L. exhibited values below 66% in the tested samples, which indicated the leachate phytotoxicity. In spite of the fact that similar studies are tackling the acute toxicity of leachates from tires (particularly to algae, embryos and animals), this research brings complementary information in testing the acute phytotoxicity of tire leachates to higher plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.