Recently modified gravitational theories which mimic the behaviour of dark matter, the so-called "Mimetic Dark Matter", have been proposed. We study the consistency of such theories with respect to the absence of ghost instability and propose a new tensor-vector-scalar theory of gravity, which is a generalization of the previous models of mimetic dark matter with additional desirable features. The original model proposed by Chamseddine and Mukhanov [JHEP 11 (2013) 135] is concluded to describe a regular pressureless dust, presuming that we consider only those configurations where the energy density of the mimetic dust remains positive under time evolution. For certain type of configurations the theory can become unstable. Both alternative modified theories of gravity, which are based on a vector field (tensor-vector theory) or a vector field and a scalar field (tensor-vector-scalar theory), are free of ghost instabilities.
We investigate path integral quantization of two versions of unimodular gravity. First a fully diffeomorphisminvariant theory is analyzed, which does not include a unimodular condition on the metric, while still being equivalent to other unimodular gravity theories at the classical level. The path integral has the same form as in general relativity (GR), except that the cosmological constant is an unspecified value of a variable, and it thus is unrelated to any coupling constant. When the state of the universe is a superposition of vacuum states, the path integral is extended to include an integral over the cosmological constant. Second, we analyze the standard unimodular theory of gravity, where the metric determinant is fixed by a constraint. Its path integral differs from the one of GR in two ways: the metric of spacetime satisfies the unimodular condition only in average over space, and both the Hamiltonian constraint and the associated gauge condition have zero average over space. Finally, the canonical relation between the given unimodular theories of gravity is established.
We analyze gravitational theories with quadratic curvature terms, including the case of conformally invariant Weyl gravity, motivated by the intention to find a renormalizable theory of gravity in the ultraviolet region, yet yielding general relativity at long distances. In the Hamiltonian formulation of Weyl gravity, the number of local constraints is equal to the number of unstable directions in phase space, which in principle could be sufficient for eliminating the unstable degrees of freedom in the full nonlinear theory. All the other theories of quadratic type are unstable -a problem appearing as ghost modes in the linearized theory.We find that the full projection of the Weyl tensor onto a three-dimensional hypersurface contains an additional fully traceless component, given by a quadratic extrinsic curvature tensor. A certain inconsistency in the literature is found and resolved: when the conformal invariance of Weyl gravity is broken by a cosmological constant term, the theory becomes pathological, since a constraint required by the Hamiltonian analysis imposes the determinant of the metric of spacetime to be zero. In order to resolve this problem by restoring the conformal invariance, we introduce a new scalar field that couples to the curvature of spacetime, reminiscent of the introduction of vector fields for ensuring the gauge invariance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.