Abstract-This paper addresses the schedulability problem of periodic and sporadic real-time task sets with constrained deadlines preemptively scheduled on a multiprocessor platform composed by identical processors. We assume that a global work-conserving scheduler is used and migration from one processor to another is allowed during task lifetime. First, a general method to derive schedulability conditions for multiprocessor real-time systems will be presented. The analysis will be applied to two typical scheduling algorithms: Earliest Deadline First (EDF) and Fixed Priority (FP). Then, the derived schedulability conditions will be tightened, refining the analysis with a simple and effective technique that significantly improves the percentage of accepted task sets. The effectiveness of the proposed test is shown through an extensive set of synthetic experiments.
The question whether preemptive algorithms are better than nonpreemptive ones for scheduling a set of real-time tasks has been debated for a long time in the research community. In fact, especially under fixed priority systems, each approach has advantages and disadvantages, and no one dominates the other when both predictability and efficiency have to be taken into account in the system design. Recently, limited preemption models have been proposed as a viable alternative between the two extreme cases of fully preemptive and nonpreemptive scheduling. This paper presents a survey of the existing approaches for reducing preemptions and compares them under different metrics, providing both qualitative and quantitative performance evaluations
Different task models have been proposed to represent the parallel structure of real-time tasks executing on manycore platforms: fork/join, synchronous parallel, DAG-based, etc. Despite different schedulability tests and resource augmentation bounds are available for these task systems, we experience difficulties in applying such results to real application scenarios, where the execution flow of parallel tasks is characterized by multiple (and nested) conditional structures. When a conditional branch drives the number and size of sub-jobs to spawn, it is hard to decide which execution path to select for modeling the worst-case scenario. To circumvent this problem, we integrate control flow information in the task model, considering conditional parallel tasks (cp-tasks) represented by DAGs composed of both precedence and conditional edges. For this task model, we identify meaningful parameters that characterize the schedulability of the system, and derive efficient algorithms to compute them. A response time analysis based on these parameters is then presented for different scheduling policies. A set of simulations shows that the proposed approach allows efficiently checking the schedulability of the addressed systems, and that it significantly tightens the schedulability analysis of non-conditional (e.g., Classic DAG) tasks over existing approaches
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.