Recent reports indicate that α6β2/3γ2 GABAR selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally α6β2/3γ2 GABAR selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABAR α6 subtype was retained. 8b was identified as the lead compound with a substantially improved pharmacokinetic profile. The ligands allosterically modulated diazepam insensitive α6β2/3γ2 GABARs and were functionally silent at diazepam sensitive α1β2/3γ2 GABARs, thus no sedation was detected. In addition, these analogs were not cytotoxic, which render them interesting candidates for treatment of CNS disorders mediated by GABAR α6β2/3γ2 subtypes.
Baeyer-Villiger monooxygenases (BVMOs) are a very well-known and intensively studied class of flavin-dependent enzymes. Their substrate promiscuity, high chemo-, regio-, and enantioselectivity are prerequisites for the use in synthetic chemistry and should pave the way for successful industrial processes. Nonetheless, only a very limited number of industrial relevant transformations are known, mainly due to the lack of BVMOs stability and cofactor dependency. In this review, we focus on novel BVMO-mediated transformations, BVMOs in cascade type reactions, potential industrial applications, and how limitations have been tackled by the community. Special attention will be put on whole-cell immobilization strategies. We emphasize to bridge recent developments in fundamental research to industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.