The surface modification of nanocrystalline TiO2 particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 3-hydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid and 3,7-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate-type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. From both absorption measurements in methanol/water = 90/10 solutions and steady-state quenching measurements of modifier fluorescence upon binding to TiO2 in aqueous solutions, stability constants in the order of 10(3) M(-1) have been determined at pH 2 and pH 3. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO2 nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent CT complex. The binding structures were investigated by using FTIR spectroscopy. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were then compared with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.