Due to poor prognosis of glioblastoma (GBM), there is an urgent need to develop new therapeutic strategies. Besides eliminating GBM tumor cells and stem cells, a novel therapeutic approach aims to target Glioma-associated microglia/macrophages (GAMs). We investigated the molecular profile of GAMs correlated with patient prognosis by exploiting M1/M2-like polarization markers in a cohort of 20 GBM patients. Using quantitative PCR (qPCR), the markers CXCL10 (M1) and CCL13 (M2) were validated in human macrophages and applied to a global analysis of GBM tissue. Furthermore, proteinase genes, known to be associated with GBM progression (ADAM8, MMP9, MMP14, ADAM10, ADAM17), were analyzed in correlation to M1/M2 markers. Notably, expression levels of ADAM10 and ADAM17 are significantly correlated with an M1-like phenotype and are positively associated to patient survival. Whilst ADAM8 mRNA expression was equally correlated with M1- and M2-like markers, genes for MMP9 and MMP14 are significantly associated with an M2-like phenotype and association to impaired prognosis in the GBM patient cohort. Thus, we provide a robust and reliable combination of qPCR markers to characterize global microglia/macrophage status and the associated proteinase profiles in GBM patients that can be used to analyze the tumor microenvironment, the patients’ prognosis and preselect those GBM patients for which targeting the microglia/macrophage population by repolarization might be beneficial.
Background:The need for imaging-guided optimization of Deep Brain Stimulation (DBS) parameters is increasing with recent developments of sophisticated lead designs offering highly individualized, but time-consuming and complex programming. Objective: The objective of this study was to compare changes in motor symptoms of Parkinson's Disease (PD) and the corresponding volume of the electrostatic field (VEsF) achieved by DBS programming using GUIDE XT™, a commercially available software for visualization of DBS leads within the patient-specific anatomy from fusions of preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans, versus standard-of-care clinical programming. Methods: Clinical evaluation was performed to identify the optimal set of parameters based on clinical effects in 29 patients with PD and bilateral directional leads for Subthalamic Nucleus (STN) DBS. A second DBS program was generated in GUIDE XT™ based on a VEsF optimally located within the dorsolateral STN. Reduction of motor symptoms (Movement Disorders Society Unified Parkinson's Disease Rating Scale, MDS-UPDRS) and the overlap of the corresponding VEsF of both programs were compared. Results: Clinical and imaging-guided programming resulted in a significant reduction in the MDS-UPDRS scores compared to off-state. Motor symptom control with GUIDE XT™-derived DBS program was noninferior to standard clinical programming. The overlap of the two VEsF did not correlate with the difference in motor symptom reduction by the programs. Conclusions: Imaging-guided programming of directional DBS leads using GUIDE XT™ is possible without computational background and leads to non-inferior motor symptom control compared with clinical programming. DBS programs based on patient-specific imaging data may thus serve as starting point for clinical testing and may promote more efficient DBS programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.