Identifying how enzymes stabilize high-energy species along the reaction pathway is central to explaining their enormous rate acceleration. -Phosphoglucomutase catalyses the isomerization of -glucose-1-phosphate to -glucose-6-phosphate and appeared to be unique in its ability to stabilize a high-energy pentacoordinate phosphorane intermediate sufficiently to be directly observable in the enzyme active site. Using 19 F-NMR and kinetic analysis, we report that the complex that forms is not the postulated high-energy reaction intermediate, but a deceptively similar transition state analogue in which MgF 3 ؊ mimics the transferring PO 3 ؊ moiety. Here we present a detailed characterization of the metal ion-fluoride complex bound to the enzyme active site in solution, which reveals the molecular mechanism for fluoride inhibition of -phosphoglucomutase. This NMR methodology has a general application in identifying specific interactions between fluoride complexes and proteins and resolving structural assignments that are indistinguishable by x-ray crystallography.enzyme mechanism ͉ fluoride inhibition ͉ NMR structure ͉ phosphoryl transfer ͉ isosteric isoelectronic ͉ transition state analogue P hosphate transfer reactions play a central role in metabolism, regulation, energy housekeeping and signaling (1). As phosphate esters are kinetically extremely stable, efficient catalysis is crucial for the control of these cellular processes. Although model studies have taught us much about the intrinsic chemical mechanisms (2), our understanding of the origins of the enormous enzymatic rate accelerations involved, up to a factor of 10 21 (3), is far from complete (4). A snapshot of an enzyme in a high-energy state would be immensely useful, as it would allow the very interactions that bring about catalysis to be observed (5). However, is this realistic given how elusive high-energy intermediates and transition states (TSs) inevitably are? The direct observation of TSs for simple organic reactions has required ultrafast lasers with femtosecond resolution (6) and no physical or spectroscopic method is available to observe the structure of TSs of enzymatic reactions directly. Thus transition state analogues that bind tightly in an enzyme active site have been of paramount importance in defining the structural and energetic framework for catalysis (7,8).An observation that appears to challenge this paradigm arises from structural studies with -phosphoglucomutase (-PGM, EC 5.4.2.6): namely, that a high-energy phosphorane on the reaction pathway has been observed directly by x-ray crystallography, demonstrating how the enzyme interacts with a very high-energy, metastable species (9). The latter also apparently demonstrated that the enzyme catalyzed reaction proceeds through an addition-elimination mechanism, a reaction pathway not observed in solution for phosphate monoester anions. However, the observation of an enzyme "caught in the act" is surprising: the demands of turnover mean that the enzyme would gain no apparent advant...
The mammalian circadian clock is driven by cell-autonomous transcriptional feedback loops that involve E-boxes, D-boxes, and ROR-elements. In peripheral organs, circadian rhythms are additionally affected by systemic factors. We show that intrinsic combinatorial gene regulation governs the liver clock. With a temporal resolution of 2 h, we measured the expression of 21 clock genes in mouse liver under constant darkness and equinoctial light-dark cycles. Based on these data and known transcription factor binding sites, we develop a six-variable gene regulatory network. The transcriptional feedback loops are represented by equations with time-delayed variables, which substantially simplifies modelling of intermediate protein dynamics. Our model accurately reproduces measured phases, amplitudes, and waveforms of clock genes. Analysis of the network reveals properties of the clock: overcritical delays generate oscillations; synergy of inhibition and activation enhances amplitudes; and combinatorial modulation of transcription controls the phases. The agreement of measurements and simulations suggests that the intrinsic gene regulatory network primarily determines the circadian clock in liver, whereas systemic cues such as light-dark cycles serve to fine-tune the rhythms.
BackgroundCircadian rhythms have a profound effect on human health. Their disruption can lead to serious pathologies, such as cancer and obesity. Gene expression studies in these pathologies are often studied in different mouse strains by quantitative real time polymerase chain reaction (qPCR). Selection of reference genes is a crucial step of qPCR experiments. Recent studies show that reference gene stability can vary between species and tissues, but none has taken circadian experiments into consideration.ResultsIn the present study the expression of ten candidate reference genes (Actb, Eif2a, Gapdh, Hmbs, Hprt1, Ppib, Rn18s, Rplp0, Tbcc and Utp6c) was measured in 131 liver and 97 adrenal gland samples taken from three mouse strains (C57BL/6JOlaHsd, 129Pas plus C57BL/6J and Crem KO on 129Pas plus C57BL/6J background) every 4 h in a 24 h period. Expression stability was evaluated by geNorm and NormFinder programs. Differences in ranking of the most stable reference genes were observed both between individual mouse strains as well as between tissues within each mouse strain. We show that selection of reference gene (Actb) that is often used for analyses in individual mouse strains leads to errors if used for normalization when different mouse strains are compared. We identified alternative reference genes that are stable in these comparisons.ConclusionsGenetic background and circadian time influence the expression stability of reference genes. Differences between mouse strains and tissues should be taken into consideration to avoid false interpretations. We show that the use of a single reference gene can lead to false biological conclusions. This manuscript provides a useful reference point for researchers that search for stable reference genes in the field of circadian biology.
The isomerization of beta-glucose-1-phosphate (betaG1P) to beta-glucose-6-phosphate (G6P) catalyzed by beta-phosphoglucomutase (betaPGM) has been examined using steady- and presteady-state kinetic analysis. In the presence of low concentrations of beta-glucose-1,6-bisphosphate (betaG16BP), the reaction proceeds through a Ping Pong Bi Bi mechanism with substrate inhibition (kcat = 65 s(-1), K(betaG1P) = 15 microM, K(betaG16BP) = 0.7 microM, Ki = 122 microM). If alphaG16BP is used as a cofactor, more complex kinetic behavior is observed, but the nonlinear progress curves can be fit to reveal further catalytic parameters (kcat = 74 s(-1), K(betaG1P) = 15 microM, K(betaG16BP) = 0.8 microM, Ki = 122 microM, K(alphaG16BP) = 91 microM for productive binding, K(alphaG16BP) = 21 microM for unproductive binding). These data reveal that variations in the substrate structure affect transition-state affinity (approximately 140,000-fold in terms of rate acceleration) substantially more than ground-state binding (110-fold in terms of binding affinity). When fluoride and magnesium ions are present, time-dependent inhibition of the betaPGM is observed. The concentration dependence of the parameters obtained from fitting these progress curves shows that a betaG1P x MgF3(-) x betaPGM inhibitory complex is formed under the reaction conditions. The overall stability constant for this complex is approximately 2 x 10(-16) M(5) and suggests an affinity of the MgF3(-) moiety to this transition-state analogue (TSA) of < or = 70 nM. The detailed kinetic analysis shows how a special type of TSA that does not exist in solution is assembled in the active site of an enzyme. Further experiments show that under the conditions of previous structural studies, phosphorylated glucose only persists when bound to the enzyme as the TSA. The preference for TSA formation when fluoride is present, and the hydrolysis of substrates when it is not, rules out the formation of a stable pentavalent phosphorane intermediate in the active site of betaPGM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.