Catechol-O-methyltransferase (COMT) catalyses the O-methylation of compounds having a catechol structure and its main function involves the elimination of biologically active or toxic catechols and their metabolites. By means of homologous recombination in embryonic stem cells, a strain of mice has been produced in which the gene encoding the COMT enzyme is disrupted. We report here the levels of catecholamines and their metabolites in striatal extracellular fluid in these mice as well as in homogenates from different parts of the brain, under normal conditions and after acute levodopa administration. In immunoblotting studies, COMT-knockout mice had no COMT protein in brain or kidney tissues but the amounts of catecholamine synthesizing and other metabolizing enzyme proteins were normal. Under normal conditions, COMT deficiency does not appear to affect significantly brain dopamine and noradrenaline levels in spite of relevant changes in their metabolites. This finding is consistent with previous pharmacological studies with COMT inhibitors and confirms the pivotal role of synaptic reuptake processes and monoamine oxidase-dependent metabolism in terminating the actions of catecholamines at nerve terminals. In contrast, when COMT-deficient mice are challenged with l-dihydroxyphenylalanine, they show an extensive accumulation of 3,4-dihydroxyphenylacetic acid and dihydroxyphenylglycol and even dopamine, revealing an important role for COMT under such situations. Notably, in some cases these changes appear to be Comt gene dosage-dependent, brain-region specific and sexually dimorphic. Our results may have implications for improving the treatment of Parkinson's disease and for understanding the contribution of the natural variation in COMT activity to psychiatric phenotypes.
Two different uptake processes terminate the synaptic action of released catecholamines in brain: the high-affinity uptake to presynaptic nerve terminals (uptake 1 , followed by oxidation by monoamine oxidase, MAO) or glial cells uptake (uptake 2 , followed by O-methylation by catechol-O-methyltransferase, COMT, and/or oxidation by MAO). For dopaminergic neurons, uptake by the high-affinity dopamine transporter (DAT) is the most effective mechanism, and the contribution of glial COMT remains secondary under normal conditions. In the present study we have characterized the role of COMT using COMT-deficient mice in conditions where DAT is inhibited by 1-[2-[bis(4-fluorophenyl)methoxy-]ethyl]-4-(3-phenylpropyl)-piperazine (GBR 12909) or cocaine. In mice lacking COMT, GBR 12909 results in total brain tissue dopamine levels generally higher than in wildtype mice but no such potentiation was ever seen in striatal extracellular fluid. Dopamine accumulation in nerve endings is more evident in striatum and hypothalamus than in cortex. Both GBR 12909 and cocaine induced hyperlocomotion in mice lacking COMT. Unexpectedly, hyperactivity induced by 20 mg/kg GBR 12909 was attenuated only in male COMT knockout mice, i.e., they had an inability to sustain the hyperactivity induced by DAT inhibition. Furthermore, attenuation of hyperlocomotion was observed also after cocaine treatment in both C57BL/6 (at 5 and 15 mg/kg) and 129/Sv (at 30 mg/kg) genetic background COMT-deficient male mice. Despite the possible interaction between DAT and extraneuronal uptake (and subsequently COMT), the role of COMT in dopamine elimination is still minimal in conditions when DAT is inhibited.The dopamine transporter (DAT) and monoamine oxidase (MAO) play key roles in dopamine elimination and are expected to have pleiotropic effects on susceptibility to a wide range of behavioral/psychiatric disorders and symptoms associated with dysregulation of dopamine transmission. Due the extraneuronal location in the brain (astrocytes, capillary walls, and postsynaptic dendritic spines; Karhunen et al., 1995), the significance of catechol-O-methyltransferase (COMT) on dopamine metabolism remains secondary under normal conditions.
Changes in COMT activity modulates dopamine metabolism but the behavioral effects of d-amphetamine in male mice only to a small extent, and this action does not seem to depend on the actual extracellular dopamine concentration. Nor is it mediated through compensatory changes in dopamine D(1) and D(2) receptor levels. In dopaminergic neurons, the contribution of intracellular COMT remains secondary in conditions when dopamine is released by d-amphetamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.