Enhanced premixed combustion of neat butanol in a compression ignition engine can have challenges with regards to the peak pressure rise rate and the peak in-cylinder pressure. It was proposed to utilize a butanol post injection to reduce the peak pressure rise rate and the peak in-cylinder pressure while maintaining a constant engine load. Post injection timing and duration sweeps were carried out with neat n-butanol in a compression ignition engine. The post injection timing sweep results indicated that the use of an early butanol post injection reduced the peak pressure rise rate and the peak in-cylinder pressure and it was observed that there was an optimal post injection timing range for the maximum reduction of these parameters. The results also showed that an early post injection of butanol increased the nitrogen oxide emissions and an FTIR analysis revealed that late post injections increased the emissions of unburned butanol.
The post injection duration sweep indicated that the peak pressure rise rate was significantly reduced by increasing the post injection duration at constant load conditions. There was also a reduction in the peak in-cylinder pressure. Measurements with a hydrogen mass spectrometer showed that there was an increased presence of hydrogen in the exhaust gas when the post injection duration was increased but the total yield of hydrogen was relatively low. It was observed that the coefficient of variation for the indicated mean effective pressure was significantly increased and that the indicated thermal efficiency was reduced when the post injection duration was increased. The results also showed that there were increased nitrogen oxide, carbon monoxide, and total hydrocarbon emissions for larger post injections. Although the use of a post injection resulted in emission and thermal efficiency penalties at medium load conditions, the results demonstrated that the post injection strategy successfully reduced the peak pressure rise rate and this characteristic can be potentially useful for higher load applications where the peak pressure rise rate is of greater concern.
The effects of postinjection with late partially premixed charge compression ignition (PCCI) were investigated with respect to diesel exhaust gas conditioning and potential power production. Initial tests comparing postinjection application with PCCI to that with conventional diesel high temperature combustion (HTC) indicated the existence of similar trends in terms of carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx), and smoke emissions. However, postinjection in PCCI cycles exhibited lower NOxand smoke but higher CO and THC emissions. With PCCI operation, the use of postinjection showed much weaker ability for raising the exhaust gas temperature compared to HTC. Additional PCCI investigations generally showed increasing CO and THC, relatively constant NOx, and decreasing smoke emissions, as the postinjection was shifted further from top dead center (TDC). Decreasing the overall air-to-fuel ratio resulted in increased hydrogen content levels but at the cost of increased smoke, THC and CO emissions. The power production capabilities of early postinjection, combined with PCCI, were investigated and the results showed potential for early postinjection power production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.