When fast detection of chemical warfare agents in the field is required, the ion mobility spectrometer may be the only suitable option. This article provides an essential survey of the different ion mobility spectrometry detection technologies. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).
This study identifies new wood-based products with considerable potential and attractive markets, including textiles, liquid biofuels, platform chemicals, plastics, and packaging. We apply a mixed-methods review to examine how the position of the forest industry in a given value chain determines the respective production value. An assessment is provided as to the degree to which these emerging wood-based products could compensate for the foreseen decline of graphic paper markets in four major forest industry countries: USA, Canada, Sweden, and Finland. A 1%-2% market share in selected global markets implies a potential increase in revenues of 18-75 billion euros per annum in the four selected countries by 2030. This corresponds to 10%-43% of the production value of forest industries in 2016 and compares with a projected decline of graphic paper industry revenue of 5.5 billion euros by 2030. The respective impacts on wood use are manifold, as many of the new products utilize by-products as feedstock. The increase in primary wood use, which is almost entirely attributed to construction and to some extent textiles markets, would be in the range of 15-133 million m 3 , corresponding to 2%-21% of the current industrial roundwood use in the selected countries.
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.