We review recent progress in understanding the notion of locality in integrable quantum lattice systems. The central concept are the so-called quasilocal conserved quantities, which go beyond the standard perception of locality. Two systematic procedures to rigorously construct families of quasilocal conserved operators based on quantum transfer matrices are outlined, specializing on anisotropic Heisenberg XXZ spin-1/2 chain. Quasilocal conserved operators stem from two distinct classes of representations of the auxiliary space algebra, comprised of unitary (compact) representations, which can be naturally linked to the fusion algebra and quasiparticle content of the model, and non-unitary (non-compact) representations giving rise to charges, manifestly orthogonal to the unitary ones. Various condensed matter applications in which quasilocal conservation laws play an essential role are presented, with special emphasis on their implications for anomalous transport properties (finite Drude weight) and relaxation to non-thermal steady states in the quantum quench scenario.
We identify a class of one-dimensional spin and fermionic lattice models which display diverging spin and charge diffusion constants, including several paradigmatic models of exactly solvable strongly correlated many-body dynamics such as the isotropic Heisenberg spin chains, the Fermi-Hubbard model, and the t-J model at the integrable point. Using the hydrodynamic transport theory, we derive an analytic lower bound on the spin and charge diffusion constants by calculating the curvature of the corresponding Drude weights at half filling, and demonstrate that for certain lattice models with isotropic interactions some of the Noether charges exhibit super-diffusive transport at finite temperature and half filling.
Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2 ChainIlievski, E.; Medenjak, M.; Prosen, T. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1=2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. Here we reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the quantum non-linear sigma model. Employing an exact non-perturbative theoretical approach, we analyze the low-temperature behaviour in the vicinity of non-magnetized states and obtain exact expressions for the spin diffusion constant and the NMR relaxation rate, which we compare with previous theoretical results in the literature. Surprisingly, in SU (2)-invariant spin chains in the vicinity of half-filling we find a crossover from the semi-classical regime to a strongly interacting quantum regime characterized by zero spin Drude weight and diverging spin conductivity, indicating super-diffusive spin dynamics. The dynamical exponent of spin fluctuations is argued to belong to the Kardar-Parisi-Zhang universality class. Furthermore, by employing numerical tDMRG simulations, we find robust evidence that the anomalous spin transport persists also at high temperatures, irrespectively of the spectral gap and integrability of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.