We introduced an algorithm for unconstrained optimization based on the transformation of the Newton method with the line search into a gradient descent method. Main idea used in the algorithm construction is approximation of the Hessian by an appropriate diagonal matrix. The steplength calculation algorithm is based on the Taylor's development in two successive iterative points and the backtracking line search procedure. The linear convergence of the algorithm is proved for uniformly convex functions and strictly convex quadratic functions satisfying specified conditions.
We propose an adaptation of the partitioning method for determination of the MoorePenrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (representing the convolution kernels) are known in advance. The advantage of the introduced method is a significant reduction in the computational time required to calculate the Moore-Penrose inverse of specific Toeplitz matrices of an arbitrary size. The method is implemented in M A T L A B , and illustrative examples are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.